• Leroy H, Han M, Woottum M, Bracq L, Bouchet J, Xie M, Benichou S. Virus-mediated cell-cell Fusion. Int J Mol Sci. 2020;21:9644.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchrieser J, Schwartz O. Pregnancy complications and Interferon-induced transmembrane proteins (IFITM): balancing antiviral immunity and placental development. C R Biol. 2021;344:145–56.

    PubMed 

    Google Scholar
     

  • Hernandez JM, Podbilewicz B. The hallmarks of cell-cell fusion. Development. 2017;144:4481–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brukman NG, Uygur B, Podbilewicz B, Chernomordik LV. How cells fuse. J Cell Biol. 2019;218:1436–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Segev N, Avinoam O, Podbilewicz B. Fusogens Curr Biol. 2018;28:R378–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dominguez SR, Travanty EA, Qian Z, Mason RJ. Human coronavirus HKU1 infection of primary human type II alveolar epithelial cells: cytopathic effects and innate immune response. PLoS ONE. 2013;8:e70129.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orenstein JM, Banach B, Baker SC. Morphogenesis of Coronavirus HCoV-NL63 in Cell Culture: a transmission Electron microscopic study. Open Infect Dis J. 2008;2:52–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franks TJ, Chong PY, Chui P, Galvin JR, Lourens RM, Reid AH, Selbs E, McEvoy CP, Hayden CD, Fukuoka J, et al. Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore. Hum Pathol. 2003;34:743–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol. 2010;84:12658–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan JF, Chan KH, Choi GK, To KK, Tse H, Cai JP, Yeung ML, Cheng VC, Chen H, Che XY, et al. Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: implications for disease pathogenesis and clinical manifestation. J Infect Dis. 2013;207:1743–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qian Z, Dominguez SR, Holmes KV. Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation. PLoS ONE. 2013;8:e76469.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bussani R, Schneider E, Zentilin L, Collesi C, Ali H, Braga L, Volpe MC, Colliva A, Zanconati F, Berlot G, et al. Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology. EBioMedicine. 2020;61:103104.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffmann M, Kleine-Weber H, Pohlmann S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell. 2020;78:779–784e775.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian S, Hu W, Niu L, Liu H, Xu H, Xiao SY. Pulmonary Pathology of Early-Phase 2019 Novel Coronavirus (COVID-19) pneumonia in two patients with Lung Cancer. J Thorac Oncol. 2020;15:700–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8:420–2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braga L, Ali H, Secco I, Chiavacci E, Neves G, Goldhill D, Penn R, Jimenez-Guardeno JM, Ortega-Prieto AM, Bussani R, et al. Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia. Nature. 2021;594:88–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bryce C, Grimes Z, Pujadas E, Ahuja S, Beasley MB, Albrecht R, Hernandez T, Stock A, Zhao Z, AlRasheed MR, et al. Pathophysiology of SARS-CoV-2: the Mount Sinai COVID-19 autopsy experience. Mod Pathol. 2021;34:1456–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo WR, Yu H, Gou JZ, Li XX, Sun Y, Li JX, He JX, Liu L. Histopathologic findings in the explant lungs of a patient with COVID-19 treated with bilateral Orthotopic Lung Transplant. Transplantation. 2020;104:e329–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, Oude Munnink BB, de Meulder D, van Amerongen G, van den Brand J, Okba NMA, et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science. 2020;368:1012–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Zheng Y, Niu Z, Zhang B, Wang C, Yao X, Peng H, Franca DN, Wang Y, Zhu Y, et al. SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte elimination. Cell Death Differ. 2021;28:2765–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchrieser J, Dufloo J, Hubert M, Monel B, Planas D, Rajah MM, Planchais C, Porrot F, Guivel-Benhassine F, Van der Werf S, et al. Syncytia formation by SARS-CoV-2-infected cells. EMBO J. 2020;39:e106267.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanders DW, Jumper CC, Ackerman PJ, Bracha D, Donlic A, Kim H, Kenney D, Castello-Serrano I, Suzuki S, Tamura T, et al. SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation. Elife. 2021;10:e65962

  • Li D, Liu Y, Lu Y, Gao S, Zhang L. Palmitoylation of SARS-CoV-2 S protein is critical for S-mediated syncytia formation and virus entry. J Med Virol. 2022;94:342–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng YW, Chao TL, Li CL, Wang SH, Kao HC, Tsai YM, Wang HY, Hsieh CL, Lin YY, Chen PJ, et al. D614G substitution of SARS-CoV-2 spike protein increases Syncytium formation and virus titer via enhanced furin-mediated spike cleavage. mBio. 2021;12:e0058721.

    Article 
    PubMed 

    Google Scholar
     

  • Clinical guidance for management of adult COVID-19 patients. www.icmr.gov.in/pdf/covid/techdoc/COVID_Clinical_Management_19032023.pdf. 05 January 2023.

  • van Kampen JJA, van de Vijver D, Fraaij PLA, Haagmans BL, Lamers MM, Okba N, van den Akker JPC, Endeman H, Gommers D, Cornelissen JJ, et al. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19). Nat Commun. 2021;12:267.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Ma X. Acute respiratory failure in COVID-19: is it “typical” ARDS? Crit Care. 2020;24:198.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, et al. A novel coronavirus from patients with Pneumonia in China, 2019. N Engl J Med. 2020;382:727–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Lu H, Melino G, Boccia S, Piacentini M, Ricciardi W, Wang Y, Shi Y, Zhu T. COVID-19 infection: the China and Italy perspectives. Cell Death Dis. 2020;11:438.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, Bucci E, Piacentini M, Ippolito G, Melino G. COVID-19 infection: the perspectives on immune responses. Cell Death Differ. 2020;27:1451–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forni G, Mantovani A. Covid-19 Commission of Accademia Nazionale dei lincei R: COVID-19 vaccines: where we stand and challenges ahead. Cell Death Differ. 2021;28:626–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaudhary S, Rai P, Joshi A, Yadav P, Sesham K, Kumar S, Mridha AR, Baitha U, Nag TC, Soni KD et al. Ultracellular Imaging of Bronchoalveolar Lavage from Young COVID-19 Patients with Comorbidities Showed Greater SARS-COV-2 Infection but Lesser Ultrastructural Damage Than the Older Patients. Microsc Microanal 2022:1–25.

  • Chaudhary S, Rai P, Sesham K, Kumar S, Singh P, Nag TC, Chaudhuri P, Trikha A, Yadav SC. Microscopic imaging of bronchoalveolar fluids of COVID-19 positive intubated patients reveals the different level of SARS-CoV-2 infection on oral squamosal epithelial cells. Indian J Biochem Biophys. 2021;58:196–207.

    CAS 

    Google Scholar
     

  • Li Q, Wang Y, Sun Q, Knopf J, Herrmann M, Lin L, Jiang J, Shao C, Li P, He X, et al. Immune response in COVID-19: what is next? Cell Death Differ. 2022;29:1107–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin L, Li Q, Wang Y, Shi Y. Syncytia formation during SARS-CoV-2 lung infection: a disastrous unity to eliminate lymphocytes. Cell Death Differ. 2021;28:2019–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng Y, Zhou LL, Su Y, Sun Q. Cell fusion in the pathogenesis of COVID-19. Mil Med Res. 2021;8:68.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajah MM, Bernier A, Buchrieser J, Schwartz O. The mechanism and consequences of SARS-CoV-2 spike-mediated Fusion and Syncytia formation. J Mol Biol. 2022;434:167280.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Source link