• Donaldson, G. C., Hurst, J. R., Smith, C. J., Hubbard, R. B. & Wedzicha, J. A. Increased risk of myocardial infarction and stroke following exacerbation of COPD. Chest 137(5), 1091–1097 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Sabit, R. et al. Arterial stiffness and osteoporosis in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 175(12), 1259–1265 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • McAllister, D. A. et al. Arterial stiffness is independently associated with emphysema severity in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 176(12), 1208–1214 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maclay, J. et al. Vascular dysfunction in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. doi.org/10.1164/rccm.200903-0414OC (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Mills, N. L. et al. Increased arterial stiffness in patients with chronic obstructive pulmonary disease: A mechanism for increased cardiovascular risk. Thorax 63(4), 306–311 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeboah, J., Crouse, J. R., Hsu, F. C., Burke, G. L. & Herrington, D. M. Brachial flow-mediated dilation predicts incident cardiovascular events in older adults: The Cardiovascular Health Study. Circulation 115(18), 2390–2397 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Yeboah, J. et al. Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: the multi-ethnic study of atherosclerosis. Circulation 120(6), 502–509 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel, A. R. et al. Cardiovascular risk, myocardial injury, and exacerbations of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 188(9), 1091–1099 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dweik, R. A. et al. An official ATS clinical practice guideline: Interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am. J. Respir. Crit. Care Med. 184(5), 602–615 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eickhoff, P. et al. Determinants of systemic vascular function in patients with stable chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 178(12), 1211–1218 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hingorani, A. D. et al. Acute systemic inflammation impairs endothelium-dependent dilatation in humans. Circulation 102(9), 994–999 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marchetti, N. et al. Hospitalized acute exacerbation of COPD impairs flow and nitroglycerin-mediated peripheral vascular dilation. COPD 8(2), 60–65 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • McNicholas, W. T., Verbraecken, J. & Marin, J. M. Sleep disorders in COPD: The forgotten dimension. Eur. Respir. Rev. 22(129), 365–375 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vermeeren, M. A., Schols, A. M. & Wouters, E. F. Effects of an acute exacerbation on nutritional and metabolic profile of patients with COPD. Eur. Respir. J. 10(10), 2264–2269 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Albarrati, A. M., Gale, N. S., Munnery, M. M., Cockcroft, J. R. & Shale, D. J. Daily physical activity and related risk factors in COPD. BMC Pulm. Med. 20(1), 60 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moy, M. L., Danilack, V. A., Weston, N. A. & Garshick, E. Daily step counts in a US cohort with COPD. Respir. Med. 106(7), 962–969 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Troosters, T. et al. Physical inactivity in patients with COPD, a controlled multi-center pilot-study. Respir. Med. 104(7), 1005–1011 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waschki, B. et al. Physical activity monitoring in COPD: Compliance and associations with clinical characteristics in a multicenter study. Respir. Med. 106(4), 522–530 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Garcia-Aymerich, J., Lange, P., Benet, M., Schnohr, P. & Anto, J. M. Regular physical activity reduces hospital admission and mortality in chronic obstructive pulmonary disease: A population based cohort study. Thorax 61(9), 772–778 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor, H. L. et al. Effects of bed rest on cardiovascular function and work performance. J. Appl. Physiol. 2(5), 223–239 (1949).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Convertino, V. A. Cardiovascular consequences of bed rest: Effect on maximal oxygen uptake. Med. Sci. Sports Exerc. 29(2), 191–196 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arinell, K., Christensen, K., Blanc, S., Larsson, A. & Frobert, O. Effect of prolonged standardized bed rest on cystatin C and other markers of cardiovascular risk. BMC Physiol. 11, 17 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jurdana, M. et al. Impact of 14-day bed rest on serum adipokines and low-grade inflammation in younger and older adults. Age (Dordr.) 37(6), 116 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Barnes, J. N. et al. Arterial stiffening, wave reflection, and inflammation in habitually exercising systemic lupus erythematosus patients. Am. J. Hypertens. doi.org/10.1038/ajh.2011.143 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Provan, S. A. et al. Early prediction of increased arterial stiffness in patients with chronic inflammation: A 15-year followup study of 108 patients with rheumatoid arthritis. J. Rheumatol. 38(4), 606–612 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Yiu, K. H. et al. Increased arterial stiffness in patients with psoriasis is associated with active systemic inflammation. Br. J. Dermatol. 164(3), 514–520 (2011).

    PubMed 

    Google Scholar
     

  • van Bussel, B. C. et al. Endothelial dysfunction and low-grade inflammation are associated with greater arterial stiffness over a 6-year period. Hypertension 58(4), 588–595 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Yasmin, McEniery CM. et al. Matrix metalloproteinase-9 (MMP-9), MMP-2, and serum elastase activity are associated with systolic hypertension and arterial stiffness. Arterioscler. Thromb. Vasc. Biol. 25(2), 372 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yasmin, McEniery CM., Wallace, S., Mackenzie, I. S., Cockcroft, J. R. & Wilkinson, I. B. C-reactive protein is associated with arterial stiffness in apparently healthy individuals. Arterioscler. Thromb. Vasc. Biol. 24(5), 969–74 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Donnell, D. E., Sanii, R., Anthonisen, N. R. & Younes, M. Effect of dynamic airway compression on breathing pattern and respiratory sensation in severe chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 135(4), 912–918 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laurent, S. et al. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J. 27(21), 2588–2605 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Faizi, A. K., Kornmo, D. W. & Agewall, S. Evaluation of endothelial function using finger plethysmography. Clin. Physiol. Funct. Imaging 29(5), 372–375 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonetti, P. O. et al. Noninvasive identification of patients with early coronary atherosclerosis by assessment of digital reactive hyperemia. J. Am. Coll. Cardiol. 44(11), 2137–2141 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Meeme, A., Buga, G. A., Mammen, M. & Namugowa, A. Endothelial dysfunction and arterial stiffness in pre-eclampsia demonstrated by the EndoPAT method. Cardiovasc. J. Afr. 28(1), 23–29 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Syvanen, K., Korhonen, P., Partanen, A. & Aarnio, P. Endothelial function in a cardiovascular risk population with borderline ankle-brachial index. Vasc. Health Risk Manag. 7, 97–101 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subrahmanyam, R. M. et al. Can bronchial asthma be classified based on the immunological status?. Lung India 28(2), 110–113 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takemura, M. et al. High sensitivity C-reactive protein in asthma. Eur. Respir. J. 27(5), 908–912 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Storm, F. A., Heller, B. W. & Mazza, C. Step detection and activity recognition accuracy of seven physical activity monitors. PLoS ONE 10(3), e0118723 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vooijs, M. et al. Validity and usability of low-cost accelerometers for internet-based self-monitoring of physical activity in patients with chronic obstructive pulmonary disease. Interact. J. Med. Res. 3(4), e14 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prieto-Centurion, V. et al. Can commercially available pedometers be used for physical activity monitoring in patients with COPD following exacerbations?. Chronic Obstr. Pulm. Dis. 3(3), 636–642 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, S. L. et al. Comparison between COPD Assessment Test (CAT) and modified Medical Research Council (mMRC) dyspnea scores for evaluation of clinical symptoms, comorbidities and medical resources utilization in COPD patients. J. Formos Med. Assoc. 118(1 Pt 3), 429–435 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Ozben, B. et al. Acute exacerbation impairs endothelial function in patients with chronic obstructive pulmonary disease. Turk. Kardiyol. Dern. Ars. 38(1), 1–7 (2010).

    PubMed 

    Google Scholar
     

  • Sproston, N. R. & Ashworth, J. J. Role of C-reactive protein at sites of inflammation and infection. Front. Immunol. 9, 754 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venugopal, S. K., Devaraj, S., Yuhanna, I., Shaul, P. & Jialal, I. Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation 106(12), 1439–1441 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vivodtzev, I. et al. Arterial stiffness in COPD. Chest 145(4), 861–875 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Stickland, M. K. et al. Chemosensitivity, cardiovascular risk, and the ventilatory response to exercise in COPD. PLoS ONE 11(6), e0158341 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edgell, H., Moore, L. E., Chung, C., Byers, B. W. & Stickland, M. K. Short-term cardiovascular and autonomic effects of inhaled salbutamol. Respir. Physiol. Neurobiol. 231, 14–20 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, L. E. et al. Acute effects of salbutamol on systemic vascular function in people with asthma. Respir. Med. 155, 133–140 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Demeyer, H. et al. The minimal important difference in physical activity in patients with COPD. PLoS ONE 11(4), e0154587 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moore, L. E. et al. Cardiovascular benefits from standard pulmonary rehabilitation are related to baseline exercise tolerance levels in chronic obstructive pulmonary disease. Respir. Med. 132, 56–61 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Source link