• Finder, J. D. et al. Respiratory care of the patient with Duchenne muscular dystrophy: ATS consensus statement. Am. J. Respir. Crit. Care Med. 170, 456–465. doi.org/10.1164/rccm.200307-885ST (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Seddon, P. C. & Khan, Y. Respiratory problems in children with neurological impairment. Arch. Dis. Childhood 88, 75–78 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Stehling, F., Dohna-Schwake, C., Mellies, U. & Grosse-Onnebrink, J. Decline in lung volume with Duchenne muscular dystrophy is associated with ventilation inhomogeneity. Resp. Care 60, 1257–1263. doi.org/10.4187/respcare.04025 (2015).

    Article 

    Google Scholar
     

  • Dohna-Schwake, C., Ragette, R., Teschler, H., Voit, T. & Mellies, U. IPPB-assisted coughing in neuromuscular disorders. Pediat. Pulmonol. 41, 551–557 (2006).

    Article 

    Google Scholar
     

  • Gregg, I. & Nunn, A. J. Peak expiratory flow in normal subjects. Br. Med. J. 3, 282–284 (1973).

    CAS 
    Article 

    Google Scholar
     

  • Harris, R. S. & Lawson, T. V. The relative mechanical effectiveness and efficiency of successive voluntary coughs in healthy young adults. Clin. Sci. 34, 569–577 (1968).

    CAS 
    PubMed 

    Google Scholar
     

  • Whittenberger, J. L. & Mead, J. Respiratory dynamics during cough. Trans. Ann. Meet. 48, 414–418 (1952).

    CAS 

    Google Scholar
     

  • De Troyer, A., Borenstein, S. & Cordier, R. Analysis of lung volume restriction in patients with respiratory muscle weakness. Thorax 35, 603–610. doi.org/10.1136/thx.35.8.603 (1980).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Estenne, M. et al. Lung volume restriction in patients with chronic respiratory muscle weakness: the role of microatelectasis. Thorax 48, 698–701. doi.org/10.1136/thx.48.7.698 (1993).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Estenne, M., Heilporn, A., Delhez, L., Yernault, J. C. & De Troyer, A. Chest wall stiffness in patients with chronic respiratory muscle weakness. Am. Rev. Respir. Dis. 128, 1002–1007. doi.org/10.1164/arrd.1983.128.6.1002 (1983).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Gauld, L. M. Airway clearance in neuromuscular weakness. Dev. Med. Child Neurol. 51, 350–355. doi.org/10.1111/j.1469-8749.2008.03260.x (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Pryor, J. A. Physiotherapy for airway clearance in adults. Eur. Resp. J. 14, 1418–1424. doi.org/10.1183/09031936.99.14614189 (1999).

    CAS 
    Article 

    Google Scholar
     

  • Strickland, S. L. Year in review 2014: airway clearance. Resp. Care 60, 603–605. doi.org/10.4187/respcare.04095 (2015).

    Article 

    Google Scholar
     

  • Mellies, U. & Goebel, C. Optimum insufflation capacity and peak cough flow in neuromuscular disorders. Ann. Am. Thorac. Soc. 11, 1560–1568 (2014).

    Article 

    Google Scholar
     

  • Chatwin, M. & Simonds, A. K. The addition of mechanical insufflation/exsufflation shortens airway-clearance sessions in neuromuscular patients with chest infection. Resp. Care 54, 1473–1479 (2009).


    Google Scholar
     

  • Miske, L. J., Hickey, E. M., Kolb, S. M., Weiner, D. J. & Panitch, H. B. Use of the mechanical in-exsufflator in pediatric patients with neuromuscular disease and impaired cough. Chest 125, 1406–1412 (2004).

    Article 

    Google Scholar
     

  • Veldhoen, E. S. et al. Effect of mechanical insufflation-exsufflation in children with neuromuscular weakness. Pediat. Pulmonol. 55, 510–513. doi.org/10.1002/ppul.24614 (2020).

    Article 

    Google Scholar
     

  • Barach, A. L., Beck, G. J., Bickerman, H. A., Seanor, H. E. & Smith, W. Physical methods simulating mechanisms of the human cough. J. Appl. Physiol. 5, 85–91 (1952).

    CAS 
    Article 

    Google Scholar
     

  • McDonald, L. A. et al. Pneumothorax in neuromuscular disease associated with lung volume recruitment and mechanical insufflation-exsufflation. Respirol. Case Rep. 7, e00447. doi.org/10.1002/rcr2.447 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suri, P., Burns, S. P. & Bach, J. R. Pneumothorax associated with mechanical insufflation-exsufflation and related factors. Am. J. Phys. Med. Rehabil. 87, 951–955. doi.org/10.1097/PHM.0b013e31817c181e (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Hull, J. British Thoracic Society guideline for respiratory management of children with neuromuscular weakness: commentary. Thorax 67, 654–655 (2012).

    Article 

    Google Scholar
     

  • Cesareo, A. et al. Acute effects of mechanical insufflation-exsufflation on the breathing pattern in stable subjects with Duchenne muscular dystrophy. Resp. Care 63, 955–965. doi.org/10.4187/respcare.05895 (2018).

    Article 

    Google Scholar
     

  • Meric, H. et al. Short-term effect of volume recruitment-derecruitment manoeuvre on chest-wall motion in Duchenne muscular dystrophy. Chron. Respir. Dis. 14, 110–116. doi.org/10.1177/1479972316674413 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adler, A. et al. GREIT: a unified approach to 2D linear EIT reconstruction of lung images. Physiol. Meas. 30, S35-55. doi.org/10.1088/0967-3334/30/6/S03 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Schnidrig, S., Casaulta, C., Schibler, A. & Riedel, T. Influence of end-expiratory level and tidal volume on gravitational ventilation distribution during tidal breathing in healthy adults. Eur. J. Appl. Physiol. 113, 591–598. doi.org/10.1007/s00421-012-2469-7 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Wettstein, M., Radlinger, L. & Riedel, T. Effect of different breathing aids on ventilation distribution in adults with cystic fibrosis. PLoS ONE 9, e106591. doi.org/10.1371/journal.pone.0106591 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Z., Moller, K., Steinmann, D., Frerichs, I. & Guttmann, J. Evaluation of an electrical impedance tomography-based global inhomogeneity index for pulmonary ventilation distribution. Intens. Care Med. 35, 1900–1906. doi.org/10.1007/s00134-009-1589-y (2009).

    Article 

    Google Scholar
     

  • Robinson, P. D. et al. Consensus statement for inert gas washout measurement using multiple- and single-breath tests. Eur. Resp. J. 41, 507–522 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Singer, F. et al. Practicability of nitrogen multiple-breath washout measurements in a pediatric cystic fibrosis outpatient setting. Pediat. Pulmonol. 48, 739–746 (2013).

    Article 

    Google Scholar
     

  • Miller, M. R. et al. Standardisation of spirometry. Eur. Resp. J. 26, 319–338 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Abbas, C., Singer, F., Yammine, S., Casaulta, C. & Latzin, P. Treatment response of airway clearance assessed by single-breath washout in children with cystic fibrosis. J. Cyst. Fibros 12, 567–574. doi.org/10.1016/j.jcf.2013.05.010 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Dohna-Schwake, C., Ragette, R., Teschler, H., Voit, T. & Mellies, U. Predictors of severe chest infections in pediatric neuromuscular disorders. Neuromuscul. Disord. 16, 325–328. doi.org/10.1016/j.nmd.2006.02.003 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ryder, S. et al. The burden, epidemiology, costs and treatment for Duchenne muscular dystrophy: an evidence review. Orphanet. J. Rare Dis. 12, 79. doi.org/10.1186/s13023-017-0631-3 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toussaint, M., Steens, M. & Soudon, P. Lung function accurately predicts hypercapnia in patients with Duchenne muscular dystrophy. Chest 131, 368–375. doi.org/10.1378/chest.06-1265 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Chatwin, M. et al. Airway clearance techniques in neuromuscular disorders: a state of the art review. Respir. Med. 136, 98–110. doi.org/10.1016/j.rmed.2018.01.012 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Sheers, N., Howard, M. E. & Berlowitz, D. J. Respiratory adjuncts to NIV in neuromuscular disease. Respirology 24, 512–520. doi.org/10.1111/resp.13431 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Katz, S. L. et al. Long-term effects of lung volume recruitment on maximal inspiratory capacity and vital capacity in Duchenne muscular dystrophy. Ann. Am. Thor. Soc. 13, 217–222. doi.org/10.1513/AnnalsATS.201507-475BC (2016).

    Article 

    Google Scholar
     

  • McKim, D. A., Katz, S. L., Barrowman, N., Ni, A. & LeBlanc, C. Lung volume recruitment slows pulmonary function decline in Duchenne muscular dystrophy. Arch. Phys. Med. Rehabil. 93, 1117–1122. doi.org/10.1016/j.apmr.2012.02.024 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Kang, S. W. & Bach, J. R. Maximum insufflation capacity. Chest 118, 61–65. doi.org/10.1378/chest.118.1.61 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Molgat-Seon, Y. et al. Lung volume recruitment acutely increases respiratory system compliance in individuals with severe respiratory muscle weakness. ERJ Open Res. doi.org/10.1183/23120541.00135-2016 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loeb, J. S. et al. Acceptability and repeatability of spirometry in children using updated ATS/ERS criteria. Pediat. Pulmonol. 43, 1020–1024. doi.org/10.1002/ppul.20908 (2008).

    Article 

    Google Scholar
     

  • Source link