WHO Coronavirus (COVID-19) Dashboard. covid19.who.int/.
Jha, P. et al. COVID mortality in India: National survey data and health facility deaths. Science 375, 667–671. doi.org/10.1126/science.abm5154 (2022).
Tabatabai, M. et al. An analysis of COVID-19 mortality during the dominancy of alpha, delta, and omicron in the USA. J. Prim. Care Community Health 14, 21501319231170164. doi.org/10.1177/21501319231170164 (2023).
Liu, J. et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 6, 16. doi.org/10.1038/s41421-020-0156-0 (2020).
Yao, X. et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. 71, 732–739. doi.org/10.1093/cid/ciaa237 (2020).
Colson, P., Rolain, J. M. & Raoult, D. Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int. J. Antimicrob. Agents 55, 105923. doi.org/10.1016/j.ijantimicag.2020.105923 (2020).
Savarino, A., Boelaert, J. R., Cassone, A., Majori, G. & Cauda, R. Effects of chloroquine on viral infections: An old drug against today’s diseases?. Lancet Infect. Dis. 3, 722–727. doi.org/10.1016/s1473-3099(03)00806-5 (2003).
Ferner, R. E. & Aronson, J. K. Chloroquine and hydroxychloroquine in covid-19. BMJ 369, 1432. doi.org/10.1136/bmj.m1432 (2020).
Altulea, D., Maassen, S., Baranov, M. V. & van den Bogaart, G. What makes (hydroxy)chloroquine ineffective against COVID-19: Insights from cell biology. J. Mol. Cell. Biol. 13, 175–184. doi.org/10.1093/jmcb/mjab016 (2021).
Ferreira, A., Oliveira, E. S. A. & Bettencourt, P. Chronic treatment with hydroxychloroquine and SARS-CoV-2 infection. J. Med. Virol. 93, 755–759. doi.org/10.1002/jmv.26286 (2021).
Maisonnasse, P. et al. Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature 585, 584–587. doi.org/10.1038/s41586-020-2558-4 (2020).
Mauthe, M. et al. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 14, 1435–1455. doi.org/10.1080/15548627.2018.1474314 (2018).
Vabret, N. et al. Immunology of COVID-19: Current state of the science. Immunity 52, 910–941. doi.org/10.1016/j.immuni.2020.05.002 (2020).
Wolfram, J. et al. A chloroquine-induced macrophage-preconditioning strategy for improved nanodelivery. Sci. Rep. 7, 13738. doi.org/10.1038/s41598-017-14221-2 (2017).
Cortegiani, A., Ingoglia, G., Ippolito, M., Giarratano, A. & Einav, S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit. Care 57, 279–283. doi.org/10.1016/j.jcrc.2020.03.005 (2020).
Gautret, P. et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 56, 105949–105949. doi.org/10.1016/j.ijantimicag.2020.105949 (2020).
Chen, J. et al. A pilot study of hydroxychloroquine in treatment of patients with moderate COVID-19. Zhejiang Da Xue Xue Bao Yi Xue Ban 49, 215–219. doi.org/10.3785/j.issn.1008-9292.2020.03.03 (2020).
Wang, M. et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell. Res. 30, 269–271. doi.org/10.1038/s41422-020-0282-0 (2020).
National Task Force Against COVID-19. Advisory on the Use of Hydroxy-Chloroquine as Prophylaxis for SARS-CoV-2 Infection. (2020).
Zhou, D., Dai, S. M. & Tong, Q. COVID-19: A recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J. Antimicrob. Chemother. 75, 1667–1670. doi.org/10.1093/jac/dkaa114 (2020).
Schrezenmeier, E. & Dorner, T. Mechanisms of action of hydroxychloroquine and chloroquine: Implications for rheumatology. Nat. Rev. Rheumatol. 16, 155–166. doi.org/10.1038/s41584-020-0372-x (2020).
Infante, M., Ricordi, C., Alejandro, R., Caprio, M. & Fabbri, A. Hydroxychloroquine in the COVID-19 pandemic era: In pursuit of a rational use for prophylaxis of SARS-CoV-2 infection. Expert Rev. Anti Infect. Ther. 19, 5–16. doi.org/10.1080/14787210.2020.1799785 (2021).
Savarino, A., Di Trani, L., Donatelli, I., Cauda, R. & Cassone, A. New insights into the antiviral effects of chloroquine. Lancet Infect. Dis. 6, 67–69. doi.org/10.1016/S1473-3099(06)70361-9 (2006).
Grau-Pujol, B. et al. Pre-exposure prophylaxis with hydroxychloroquine for COVID-19: A double-blind, placebo-controlled randomized clinical trial. Trials 22, 808. doi.org/10.1186/s13063-021-05758-9 (2021).
Rojas-Serrano, J. et al. Hydroxychloroquine for prophylaxis of COVID-19 in health workers: A randomized clinical trial. PLoS ONE 17, e0261980. doi.org/10.1371/journal.pone.0261980 (2022).
Hoffmann, M. et al. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature 585, 588–590. doi.org/10.1038/s41586-020-2575-3 (2020).
Tang, W. et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: Open label, randomised controlled trial. BMJ 369, 1849. doi.org/10.1136/bmj.m1849 (2020).
World Health Organisation. Coronavirus Disease (COVID-19): Solidarity Trial and Hydroxychloroquine. Accessed 19 Jun 2020.
Catteau, L. et al. Low-dose hydroxychloroquine therapy and mortality in hospitalised patients with COVID-19: A nationwide observational study of 8075 participants. Int. J. Antimicrob. Agents 56, 106144. doi.org/10.1016/j.ijantimicag.2020.106144 (2020).
Pandolfi, L. et al. Broncho-alveolar inflammation in COVID-19 patients: A correlation with clinical outcome. BMC Pulm. Med. 20, 301. doi.org/10.1186/s12890-020-01343-z (2020).
Gao, J. & Hu, S. Update on use of chloroquine/hydroxychloroquine to treat coronavirus disease 2019 (COVID-19). Biosci. Trends 14, 156–158. doi.org/10.5582/bst.2020.03072 (2020).
Gao, J., Tian, Z. & Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends 14, 72–73. doi.org/10.5582/bst.2020.01047 (2020).
Keyaerts, E., Vijgen, L., Maes, P., Neyts, J. & Van Ranst, M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem. Biophys. Res. Commun. 323, 264–268. doi.org/10.1016/j.bbrc.2004.08.085 (2004).
Keyaerts, E. et al. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrob. Agents Chemother. 53, 3416–3421. doi.org/10.1128/AAC.01509-08 (2009).
Verscheijden, L. F. M. et al. Chloroquine dosing recommendations for pediatric COVID-19 supported by modeling and simulation. Clin. Pharmacol. Ther. 108, 248–252. doi.org/10.1002/cpt.1864 (2020).
Vincent, M. J. et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J. 2, 69. doi.org/10.1186/1743-422X-2-69 (2005).
Ruiz, S. et al. Hydroxychloroquine lung pharmacokinetics in critically ill patients with COVID-19. Int. J. Antimicrob. Agents 57, 106247. doi.org/10.1016/j.ijantimicag.2020.106247 (2021).
Yazdany, J. & Kim, A. H. J. Use of hydroxychloroquine and chloroquine during the COVID-19 pandemic: What every clinician should know. Ann. Intern. Med. 172, 754–755. doi.org/10.7326/M20-1334 (2020).
Molina, J. M. et al. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med. Mal. Infect. 50, 384. doi.org/10.1016/j.medmal.2020.03.006 (2020).
Guastalegname, M. & Vallone, A. Could chloroquine/hydroxychloroquine be harmful in coronavirus disease 2019 (COVID-19) treatment?. Clin. Infect. Dis. 71, 888–889. doi.org/10.1093/cid/ciaa321 (2020).
Falcao, M. B., de Goes Cavalcanti, L. P., Filgueiras Filho, N. M. & de Brito, C. A. A. Case report: Hepatotoxicity associated with the use of hydroxychloroquine in a patient with COVID-19. Am. J. Trop. Med. Hyg. 102, 1214–1216. doi.org/10.4269/ajtmh.20-0276 (2020).
Kim, A. H. J. et al. A rush to judgment? Rapid reporting and dissemination of results and its consequences regarding the use of hydroxychloroquine for COVID-19. Ann. Intern. Med. 172, 819–821. doi.org/10.7326/M20-1223 (2020).
Zhao, J. et al. Cell morphological analysis of SARS-CoV-2 infection by transmission electron microscopy. J. Thorac. Dis. 12, 4368–4373. doi.org/10.21037/jtd-20-1368 (2020).
Carcaterra, M. & Caruso, C. Alveolar epithelial cell type II as main target of SARS-CoV-2 virus and COVID-19 development via NF-Kb pathway deregulation: A physio-pathological theory. Med. Hypotheses 146, 110412. doi.org/10.1016/j.mehy.2020.110412 (2021).
Blanco-Melo, D. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181, 1036–1045. doi.org/10.1016/j.cell.2020.04.026 (2020).
Mehta, P. et al. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 395, 1033–1034. doi.org/10.1016/S0140-6736(20)30628-0 (2020).
Chaudhary, S. et al. Ultracellular imaging of bronchoalveolar lavage from young age COVID-19 patients with comorbidities showed greater SARS-COV-2 infection but lesser ultrastructural damage than the old age patients. Microsc. Microanal. 28, 2105–2129. doi.org/10.1017/S1431927622012430 (2022).