• Radaelli, A. et al. Effects of slow, controlled breathing on baroreceptor control of heart rate and blood pressure in healthy men. J. Hypertension 22, 1361–1370 (2004).

    CAS 

    Google Scholar
     

  • Bernardi, L. et al. Slow breathing increases arterial baroreflex sensitivity in patients with chronic heart failure. Circulation 105, 143–145 (2002).


    Google Scholar
     

  • Harada, D. et al. Slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with chronic heart failure: From modeling to clinical application. Am. J. Physiol. Heart Circ. Physiol. 307, H1159-1168 (2014).

    CAS 

    Google Scholar
     

  • Eckberg, D. L. & Orshan, C. R. Respiratory and baroreceptor reflex interactions in man. J. Clin. Invest. 59, 780–785 (1977).

    CAS 

    Google Scholar
     

  • Mortara, A. et al. Arterial baroreflex modulation of heart rate in chronic heart failure: Clinical and hemodynamic correlates and prognostic implications. Circulation 96, 3450–3458 (1997).

    CAS 

    Google Scholar
     

  • Ferguson, D. W., Berg, W. J., Roach, P. J., Oren, R. M. & Mark, A. L. Effects of heart failure on baroreflex control of sympathetic neural activity. Am. J. Cardiol. 69, 523–531 (1992).

    CAS 

    Google Scholar
     

  • Eckberg, D. L. & Sleight, P. Human Baroreflexes in Health and Disease (Clarendon Press, 1992).


    Google Scholar
     

  • Schultz, H. D., Marcus, N. J. & Del Rio, R. Mechanisms of carotid body chemoreflex dysfunction during heart failure. Exp. Physiol. 100, 124–129 (2015).


    Google Scholar
     

  • Ding, Y., Li, Y.-L. & Schultz, H. D. Role of blood flow in carotid body chemoreflex function in heart failure. J. Physiol. 589, 245–258 (2011).

    CAS 

    Google Scholar
     

  • Somers, V. K., Mark, A. L. & Abboud, F. M. Interaction of baroreceptor and chemoreceptor reflex control of sympathetic nerve activity in normal humans. J. Clin. Invest. 87, 1953–1957 (1991).

    CAS 

    Google Scholar
     

  • Francis, D. P., Coats, A. J. & Ponikowski, P. Chemoreflex–baroreflex interactions in cardiovascular disease. In Sleep Apnea: Implications in Cardiovascular and Cerebrovascular Disease 33–60 (Dekker, 2000).


    Google Scholar
     

  • Anand, I. S. et al. Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation 107, 1278–1283 (2003).

    CAS 

    Google Scholar
     

  • Galasko, G. I. W., Lahiri, A., Barnes, S. C., Collinson, P. & Senior, R. What is the normal range for N-terminal pro-brain natriuretic peptide? How well does this normal range screen for cardiovascular disease?. Eur. Heart J. 26, 2269–2276 (2005).

    CAS 

    Google Scholar
     

  • Tang, W. H. W. et al. National Academy of Clinical Biochemistry Laboratory Medicine practice guidelines: Clinical utilization of cardiac biomarker testing in heart failure. Circulation 116, e99-109 (2007).

    CAS 

    Google Scholar
     

  • Duffty, P., Spriet, L., Bryan, M. H. & Bryan, A. C. Respiratory induction plethysmography (Respitrace): An evaluation of its use in the infant. Am. Rev. Respir. Dis. 123, 542–546 (1981).

    CAS 

    Google Scholar
     

  • Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17, 354–381 (1996).


    Google Scholar
     

  • Di Rienzo, M., Castiglioni, P., Parati, G., Mancia, G. & Pedotti, A. Effects of sino-aortic denervation on spectral characteristics of blood pressure and pulse interval variability: A wide-band approach. Med. Biol. Eng. Comput. 34, 133–141 (1996).


    Google Scholar
     

  • Robbe, H. W. et al. Assessment of baroreceptor reflex sensitivity by means of spectral analysis. Hypertension 10, 538–543 (1987).

    CAS 

    Google Scholar
     

  • Castiglioni, P. et al. Broad-band spectral analysis of 24 h continuous finger blood pressure: Comparison with intra-arterial recordings. Clin. Sci. 97, 129–139 (1999).

    CAS 

    Google Scholar
     

  • Jenkins, G. M. & Watts, D. G. Spectral Analysis and Its Applications (Holden-Day, 1968).

    MATH 

    Google Scholar
     

  • Radaelli, A., Mancia, G., De Carlini, C., Soriano, F. & Castiglioni, P. Patterns of cardiovascular variability after long-term sino-aortic denervation in unanesthetized adult rats. Sci. Rep. 9, 25 (2019).


    Google Scholar
     

  • Modarreszadeh, M. & Bruce, E. N. Ventilatory variability induced by spontaneous variations of PaCO2 in humans. J. Appl. Physiol. 1985(76), 2765–2775 (1994).


    Google Scholar
     

  • Lahiri, S., Hsiao, C., Zhang, R., Mokashi, A. & Nishino, T. Peripheral chemoreceptors in respiratory oscillations. J. Appl. Physiol. 1985(58), 1901–1908 (1985).


    Google Scholar
     

  • Khoo, M. C., Kronauer, R. E., Strohl, K. P. & Slutsky, A. S. Factors inducing periodic breathing in humans: A general model. J. Appl. Physiol. 53, 644–659 (1982).

    CAS 

    Google Scholar
     

  • Dempsey, J. A. & Smith, C. A. Pathophysiology of human ventilatory control. Eur. Respir. J. 44, 495–512 (2014).


    Google Scholar
     

  • Cohn, J. N. et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N. Engl. J. Med. 311, 819–823 (1984).

    CAS 

    Google Scholar
     

  • Cao, J. J., Li, L., McLaughlin, J. & Passick, M. Prolonged central circulation transit time in patients with HFpEF and HFrEF by magnetic resonance imaging. Eur. Heart J. Cardiovasc. Imaging 19, 339–346 (2018).


    Google Scholar
     

  • Bilo, G. et al. Effects of slow deep breathing at high altitude on oxygen saturation, pulmonary and systemic hemodynamics. PLoS One 7, e49074 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • Bernardi, L. et al. Effect of breathing rate on oxygen saturation and exercise performance in chronic heart failure. Lancet 351, 1308–1311 (1998).

    CAS 

    Google Scholar
     

  • Cross, T. J., Kim, C.-H., Johnson, B. D. & Lalande, S. The interactions between respiratory and cardiovascular systems in systolic heart failure. J. Appl. Physiol. 1985(128), 214–224 (2020).


    Google Scholar
     

  • La Rovere, M. T. et al. Prognostic implications of baroreflex sensitivity in heart failure patients in the beta-blocking era. J. Am. Coll. Cardiol. 53, 193–199 (2009).


    Google Scholar
     

  • Bibevski, S. & Dunlap, M. E. Evidence for impaired vagus nerve activity in heart failure. Heart Fail. Rev. 16, 129–135 (2011).


    Google Scholar
     

  • Hartmann, F. et al. Prognostic impact of plasma N-terminal pro-brain natriuretic peptide in severe chronic congestive heart failure: A substudy of the carvedilol prospective randomized cumulative survival (COPERNICUS) trial. Circulation 110, 1780–1786 (2004).

    CAS 

    Google Scholar
     

  • Spinar, J. et al. Prognostic value of NT-proBNP added to clinical parameters to predict two-year prognosis of chronic heart failure patients with mid-range and reduced ejection fraction—a report from FAR NHL prospective registry. PLoS One 14, e0214363 (2019).

    CAS 

    Google Scholar
     

  • Grassi, G. et al. Effects of chronic ACE inhibition on sympathetic nerve traffic and baroreflex control of circulation in heart failure. Circulation 96, 1173–1179 (1997).

    CAS 

    Google Scholar
     

  • Shepherd, J. T. The lungs as receptor sites for cardiovascular regulation. Circulation 63, 1–10 (1981).

    CAS 

    Google Scholar
     

  • Bernardi, L., Gabutti, A., Porta, C. & Spicuzza, L. Slow breathing reduces chemoreflex response to hypoxia and hypercapnia, and increases baroreflex sensitivity. J. Hypertens. 19, 2221–2229 (2001).

    CAS 

    Google Scholar
     

  • Taylor, J. A., Carr, D. L., Myers, C. W. & Eckberg, D. L. Mechanisms underlying very-low-frequency RR-interval oscillations in humans. Circulation 98, 547–555 (1998).

    CAS 

    Google Scholar
     

  • La Rovere, M. T. et al. Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: Implications for clinical trials. Circulation 103, 2072–2077 (2001).


    Google Scholar
     

  • van de Borne, P., Montano, N., Pagani, M., Oren, R. & Somers, V. K. Absence of low-frequency variability of sympathetic nerve activity in severe heart failure. Circulation 95, 1449–1454 (1997).


    Google Scholar
     

  • Grassi, G. et al. Sympathetic modulation of radial artery compliance in congestive heart failure. Hypertension 26, 348–354 (1995).

    CAS 

    Google Scholar
     

  • Goso, Y. et al. Respiratory modulation of muscle sympathetic nerve activity in patients with chronic heart failure. Circulation 104, 418–423 (2001).

    CAS 

    Google Scholar
     

  • Guyenet, P. G., Koshiya, N., Huangfu, D., Verberne, A. J. & Riley, T. A. Central respiratory control of A5 and A6 pontine noradrenergic neurons. Am. J. Physiol. 264, R1035-1044 (1993).

    CAS 

    Google Scholar
     

  • Eckberg, D. L. Point:counterpoint: Respiratory sinus arrhythmia is due to a central mechanism vs respiratory sinus arrhythmia is due to the baroreflex mechanism. J. Appl. Physiol. (1985) 106, 1740–1742 (2009).


    Google Scholar
     

  • Hayano, J., Yasuma, F., Okada, A., Mukai, S. & Fujinami, T. Respiratory sinus arrhythmia. A phenomenon improving pulmonary gas exchange and circulatory efficiency. Circulation 94, 842–847 (1996).

    CAS 

    Google Scholar
     

  • Ito, S. et al. Vagal nerve activity contributes to improve the efficiency of pulmonary gas exchange in hypoxic humans. Exp. Physiol. 91, 935–941 (2006).


    Google Scholar
     

  • Ben-Tal, A., Wang, Y. & Leite, M. C. A. The logic behind neural control of breathing pattern. Sci. Rep. 9, 9078 (2019).

    ADS 

    Google Scholar
     

  • Van den Aardweg, J. G. & Karemaker, J. M. Influence of chemoreflexes on respiratory variability in healthy subjects. Am. J. Respir. Crit. Care Med. 165, 1041–1047 (2002).


    Google Scholar
     

  • Toledo, C. et al. Contribution of peripheral and central chemoreceptors to sympatho-excitation in heart failure. J. Physiol. 595, 43–51 (2017).

    CAS 

    Google Scholar
     

  • Ponikowski, P. et al. Oscillatory breathing patterns during wakefulness in patients with chronic heart failure: Clinical implications and role of augmented peripheral chemosensitivity. Circulation 100, 2418–2424 (1999).

    CAS 

    Google Scholar
     

  • Porta, A. et al. Model-based assessment of baroreflex and cardiopulmonary couplings during graded head-up tilt. Comput. Biol. Med. 42, 298–305 (2012).


    Google Scholar
     

  • Parati, G. et al. Closed-loop cardiovascular interactions and the baroreflex cardiac arm: Modulations over the 24 hours and the effect of hypertension. Front. Physiol. 10, 1–10 (2019).


    Google Scholar
     

  • Source link