• Bramble, D. M. & Lieberman, D. E. Endurance running and the evolution of Homo. Nature 432, 345–352 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lieberman, D. E. Human locomotion and heat loss: An evolutionary perspective. Comp. Physiol. 5, 99–117 (2015).


    Google Scholar
     

  • Shave, R. E. et al. Selection of endurance capabilities and the trade-off between pressure and volume in the human heart. Proc. Natl. Acad. Sci. 116, 19905–19910 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Callison, W. E., Holowka, N. B. & Lieberman, D. E. Thoracic adaptations for ventilation in humans and other cursorial mammals. J. Exp. Biol. 2, jeb189357 (2019).

    Article 

    Google Scholar
     

  • Bulbulian, R., Wilcox, A. & Darabos, B. Anaerobic contribution to distance running performance of trained cross-country athletes. Med. Sci. Sport Exerc. 18, 107–113 (1986).

    CAS 

    Google Scholar
     

  • Weibel, E. R. The Pathway for Oxygen (Harvard University Press, 1984).


    Google Scholar
     

  • Berry, M. J., Dunn, C. J., Pittman, C. L., Kerr, W. C. & Adair, N. E. Increased ventilation in runners during running as compared to walking at similar metabolic rates. Eur. J. Appl. Physiol. 73, 245–250 (1996).

    CAS 
    Article 

    Google Scholar
     

  • Brutsaert, T. D. et al. Association of EGLN1 gene with high aerobic capacity in Peruvian Quechua at high altitude. Proc. Natl. Acad. Sci. 116, 24006–24011 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Moseley, M. E. The Incas and their Ancestors (Thames & Hudson, 2001).


    Google Scholar
     

  • Hartley, L. H., Alexander, J. K., Modelski, M. & Grover, R. F. Subnormal cardiac output at rest and during exercise in residents at 3,100 meters altitude. J. Appl. Physiol. 23, 839–848 (1967).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Moret, P., Covarrubias, E., Coudert, J. & Duchosal, F. Cardiocirculation adaptation to chronic hypoxia III. Comparative study of cardiac output, pulmonary and systematic circulation between sea level and high altitude residents. Acta Cardiol. 27, 596–619 (1972).

    CAS 
    PubMed 

    Google Scholar
     

  • Naeije, R. Physiological adaptation of the cardiovascular system to high altitude. Prog. Cardiovasc. Dis. 52, 456–466 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Abbrecht, P. H. & Littell, J. K. Plasma erythropoietin in men and mice during acclimatization to different altitudes. J. Appl. Physiol. 32, 54–58 (1972).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Beall, C. M. Adaptation to altitude: A current assessment. Annu. Rev. Anthropol. 30, 423–446 (2001).

    Article 

    Google Scholar
     

  • Beall, C. M. Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc. Natl. Acad. Sci. 104, 8655–8660 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Frisancho, A. R. et al. Developmental, genetic, and environmental components of aerobic capacity at high altitude. Am. J. Phys. Anthropol. 96, 431–442 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hoppeler, H., Vogt, M., Weibel, E. R. & Fluck, M. Response of skeletal muscle mitochondria to hypoxia. Exp. Physiol. 88, 109–119 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pugh, L. G. C. E. Blood volume and hemoglobin concentration at altitudes above 18,000 ft (5,500 m). J. Physiol. 170, 344–354 (1964).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Spievogel, H., Otero-Calderon, L., Calderon, G., Hartmann, R. & Cudkowicz, L. The effects of high altitude on pulmonary hypertension of cardiopathies, at La Paz, Bolivia. Respiration 26, 369–386 (1969).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ward, M. P., Milledge, J. S. & West, J. B. High Altitude Medicine and Physiology (Oxford University Press, 2000).


    Google Scholar
     

  • Boyce, A. J., Haight, J. S. J., Rimmer, D. B. & Harrison, G. A. Respiratory function in Peruvian Quechua Indians. Ann. Hum. Biol. 1, 137–148 (1974).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hurtado, A. In Handbook of Physiology: Adaptation to Environment (eds Dill, D. B. et al.) (American Physiological Society, 1964).


    Google Scholar
     

  • Brody, J., Lahiri, S., Simpser, M., Motoyama, E. K. & Valasquez, T. Lung elasticity and airway dynamics in Peruvian natives to high altitude. J. Appl. Physiol. 42, 245–251 (1977).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cruz, J. Mechanics of breathing in high altitude and sea level subjects. Respir. Physiol. 17, 146–161 (1973).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Frisancho, A. R. Human growth and pulmonary function of a high altitude Peruvian Quechua population. Hum. Biol. 91, 365–379 (1969).


    Google Scholar
     

  • Frisancho, A. R. et al. Developmental, genetic and environmental components of lung volumes at high altitude. Am. J. Hum. Biol. 9, 191–203 (1997).

    PubMed 
    Article 

    Google Scholar
     

  • Greksa, L. P. Evidence for a genetic basis to the enhanced total lung capacity of Andean highlanders. Hum. Biol. 68, 118–129 (1996).


    Google Scholar
     

  • Greksa, L. P., Spielvogel, H. & Caceres, E. Total lung capacity in young highlanders of Aymara ancestry. Am. J. Phys. Anthropol. 94, 477–486 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kiyamu, M. et al. Developmental and genetic components explain enhanced pulmonary volumes of female Peruvian Quechua. Am. J. Phys. Anthropol. 128, 534–542 (2012).

    Article 

    Google Scholar
     

  • Lahiri, S. et al. Relative role of environmental and genetic factors in respiratory adaptation to high altitude. Nature 261, 133–135 (1976).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Greksa, L. P. Chest morphology of young Bolivian high-altitude residents of European ancestry. Hum. Biol. 58, 427–443 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • Mueller, W. H., Schull, V. N., Schull, W. J., Soto, P. & Rothhammer, F. A multinational Andean Genetic and Health Program: Growth and development in an hypoxic environment. Ann. Hum. Biol. 5, 329–352 (1978).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Niermeyer, S., Zamudio, S. & Moore, L. G. In High Altitude: An Exploration of Human Adaptation (eds Hornbein, T. & Schoene, R.) (Marcel Dekker Inc, 2001).


    Google Scholar
     

  • Palomino, H., Mueller, W. H. & Schull, W. J. Altitude, heredity and body proportions in northern Chile. Am. J. Phys. Anthropol. 50, 39–50 (1979).

    Article 

    Google Scholar
     

  • Pyzuk, M., Turusbekow, B. T. & Brjancewa, L. A. Certain properties of the respiratory system in school children in various altitude and climatic conditions. Hum. Biol. 39, 35–52 (1967).


    Google Scholar
     

  • Stinson, S. Chest dimensions of European and Aymara children at high altitude. Ann. Hum. Biol. 12, 333–338 (1985).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brutsaert, T. D. et al. Effects of birthplace and individual genetic admixture on lung volume and exercise phenotypes of Peruvian Quechua. Am. J. Phys. Anthropol. 123, 390–398 (2004).

    PubMed 
    Article 

    Google Scholar
     

  • Kiyamu, M., Elías, G., Leon-Velarde, F., Rivera-Chira, M. & Brutsaert, T. D. Aerobic capacity of Peruvian Quechua: A test of the developmental adaptation hypothesis. Am. J. Phys. Anthropol. 156, 363–373 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Harrison, G. A. In The Biology of Human Adaptability (eds Baker, P. T. & Weiner, J. S.) 509–519 (Clarendon Press, 1966).


    Google Scholar
     

  • Bateson, P., Gluckman, P. & Hanson, M. The biology of developmental plasticity and the Predictive Adaptive Response hypothesis. J. Physiol. 592, 2357–2368 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mazess, R. B. In Biosocial Interrelation in Population Adaptation (eds Watts, E. S. et al.) (Mouton Publishers, 1975).


    Google Scholar
     

  • Gehr, P. et al. Design of the mammalian respiratory system. V. Scaling morphometric pulmonary diffusing capacity to body mass: Wild and domestic mammals. Respir. Physiol. 44, 61–86 (1981).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hurtado, A. Respiratory adaptation in the Indian natives of the Peruvian Andes: Studies at high altitude. Am. J. Phys. Anthropol. 17, 137–165 (1932).

    Article 

    Google Scholar
     

  • Banzett, R., Mahan, S., Garner, D., Brughera, A. & Loring, S. A simple and reliable method to calibrate respiratory magnetometers and Respitrace. J. Appl. Physiol. 79, 2169–2176 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Binks, A., Banzett, R. & Duvivier, C. An inexpensive, MRI compatible device to measure tidal volume from chest-wall circumference. Physiol. Meas. 28, 149–159 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • Ruff, C. Climate and body shape in hominid evolution. J. Hum. Evol. 21, 81–105 (1991).

    Article 

    Google Scholar
     

  • Chakraborty, R., Barton, S. A., Ferrell, R. E. & Schull, W. J. Ethnicity determination by names among the Aymara of Chile and Bolivia. Hum. Biol. 61, 159–177 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • Tanner, J. M., Hiernaux, J. & Jarman, S. In Human Biology: A Guide to Field Methods (ed. Weiner, J. S.) (Blackwell, 1969).


    Google Scholar
     

  • George, J., Vehrs, P. R., Allsen, P. E., Fellingham, G. W. & Fischer, A. G. VO2MAX estimation from a submaximal 1-mile track jog for fit college-age individuals. Med. Sci. Sport Exerc. 25, 401–406 (1993).

    CAS 

    Google Scholar
     

  • Team, R. C. R: A language and environment for statistical computing (2014).

  • Source link