• Duncker, H. R. Vertebrate lungs: structure, topography and mechanics. A comparative perspective of the progressive integration of respiratory system, locomotor apparatus and ontogenetic development. Respir. Physiol. Neurobiol. 144, 111–124 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Longo, S., Riccio, M. & McCune, A. R. Homology of lungs and gas bladders: insights from arterial vasculature. J. Morphol. 274, 687–703 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Zheng, W. et al. Comparative transcriptome analyses indicate molecular homology of zebrafish swimbladder and mammalian lung. PLoS ONE 6, e24019 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, K. et al. African lungfish genome sheds light on the vertebrate water-to-land transition. Cell 184, 1362–1376.e18 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bi, X. et al. Tracing the genetic footprints of vertebrate landing in non-teleost ray-finned fishes. Cell 184, 1377–1391.e14 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thompson, A. W. et al. The bowfin genome illuminates the developmental evolution of ray-finned fishes. Nat. Genet. 53, 1373–1384 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pelster, B. Using the swimbladder as a respiratory organ and/or a buoyancy structure—Benefits and consequences. J. Exp. Zool. Part A: Ecol. Integr. Physiol. 335, 831–842 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Jorgensen, J. M. & Joss, J. The Biology Of Lungfishes (CRC Press, 2011).

  • Cui, X., Friedman, M., Qiao, T., Yu, Y. & Zhu, M. The rapid evolution of lungfish durophagy. Nat. Commun. 13, 2390 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsia, C. C., Schmitz, A., Lambertz, M., Perry, S. F. & Maina, J. N. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Compr. Physiol. 3, 849–915 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Otero, O. Current knowledge and new assumptions on the evolutionary history of the African lungfish, Protopterus, based on a review of its fossil record. Fish. Fish. 12, 235–255 (2011).

    Article 

    Google Scholar
     

  • Garofalo, F. et al. Signal molecule changes in the gills and lungs of the African lungfish Protopterus annectens, during the maintenance and arousal phases of aestivation. Nitric Oxide 44, 71–80 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lajus, D. L. & Alekseev, V. R. in Dormancy in Aquatic Organisms. Theory, Human Use and Modeling (eds Alekseev, V. R. & Pinel-Alloul, B.) 53–69 (Springer, 2019).

  • Perry, S. et al. Control of breathing in African lungfish (Protopterus dolloi): a comparison of aquatic and cocooned (terrestrialized) animals. Respir. Physiol. Neurobiol. 160, 8–17 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heimroth, R. D. et al. The lungfish cocoon is a living tissue with antimicrobial functions. Sci. Adv. 7, eabj0829 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sturla, M., Paola, P., Carlo, G., Angela, M. M. & Maria, U. B. Effects of induced aestivation in Protopterus annectens: a histomorphological study. J. Exp. Zool. 292, 26–31 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Heimroth, R. D., Casadei, E. & Salinas, I. Effects of experimental terrestrialization on the skin mucus proteome of African Lungfish (Protopterus dolloi). Front. Immunol. 9, 1259 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amelio, D. & Garofalo, F. The NOS/NO system in an example of extreme adaptation: the African lungfish. J. Therm. Biol. 90, 102594 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chng, Y. R. et al. Aestivation induces changes in the mRNA expression levels and protein abundance of two isoforms of urea transporters in the gills of the African Lungfish, Protopterus annectens. Front. Physiol. 8, 71 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chng, Y. R. et al. Molecular characterization of aquaporin 1 and aquaporin 3 from the gills of the African lungfish, Protopterus annectens, and changes in their branchial mRNA expression levels and protein abundance during three phases of aestivation. Front. Physiol. 7, 532 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weber, R. E., Johansen, K., Lykkeboe, G. & Maloiy, G. O. Oxygen-binding properties of hemoglobins from estivating and active African lungfish. J. Exp. Zool. 199, 85–96 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biscotti, M. A. et al. The lungfish transcriptome: a glimpse into molecular evolution events at the transition from water to land. Sci. Rep. 6, 1–12 (2016).

    Article 

    Google Scholar
     

  • Zhao, L., Wang, S., Lou, F., Gao, T. & Han, Z. Phylogenomics based on transcriptome data provides evidence for the internal phylogenetic relationships and potential terrestrial evolutionary genes of lungfish. Front. Mar. Sci. 8 (2021).

  • Freedman, A. H., Clamp, M. & Sackton, T. B. Error, noise and bias in de novo transcriptome assemblies. Mol. Ecol. Resour. 21, 18–29 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tosches, M. A. et al. Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science 360, 881–888 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Levy, S. et al. A stony coral cell atlas illuminates the molecular and cellular basis of coral symbiosis, calcification, and immunity. Cell 184, 2973–2987.e18 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, D. et al. Single cell atlas for 11 non-model mammals, reptiles and birds. Nat. Commun. 12, 7083 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Tracing cell-type evolution by cross-species comparison of cell atlases. Cell Rep. 34, 108803 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meyer, A. et al. Giant lungfish genome elucidates the conquest of land by vertebrates. Nature 590, 284–289 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng, J. & Wang, W.-X. Highly sensitive and specific responses of oyster hemocytes to copper exposure: single-cell transcriptomic analysis of different cell populations. Environ. Sci. Technol. 56, 2497–2510 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Siebert, S. et al. Stem cell differentiation trajectories in Hydra resolved at single-cell resolution. Science 365 (2019).

  • Koiwai, K. et al. Single-cell RNA-seq analysis reveals penaeid shrimp hemocyte subpopulations and cell differentiation process. eLife 10, e66954 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, X. et al. Cell type diversity in scallop adductor muscles revealed by single-cell RNA-Seq. Genomics 113, 3582–3598 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McInnes, L., Healy, J. & Melville, J. UMAP: Uniform manifold approximation and projection for dimension reduction. Preprint at arxiv.org/abs/1802.03426v3 (2020).

  • Maina, J. N. The morphology of the lung of the African lungfish, Protopterus aethiopicus: a scanning electron-microscopic study. Cell Tissue Res 250, 191–196 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. The effects and mechanisms of SLC34A2 in tumorigenesis and progression of human non-small cell lung cancer. J. Biomed. Sci. 22, 52 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corut, A. et al. Mutations in SLC34A2 cause pulmonary alveolar microlithiasis and are possibly associated with testicular microlithiasis. Am. J. Hum. Genet 79, 650–656 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. et al. A high-resolution cell atlas of the domestic pig lung and an online platform for exploring lung single-cell data. J. Genet. Genomics 48, 411–425 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Crapo, J. D., Barry, B. E., Gehr, P., Bachofen, M. & Weibel, E. R. Cell number and cell characteristics of the normal human lung. Am. Rev. Respir. Dis. 126, 332–337 (1982).

    CAS 
    PubMed 

    Google Scholar
     

  • Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509, 371–375 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kadur Lakshminarasimha Murthy, P. et al. Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature 604, 111–119 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao, Y. et al. Cell landscape of larval and adult Xenopus laevis at single-cell resolution. Nat. Commun. 13, 4306 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, eaba7721 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brigida, I. et al. T-cell defects in patients with ARPC1B germline mutations account for combined immunodeficiency. Blood 132, 2362–2374 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prager, I. & Watzl, C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J. Leukoc. Biol. 105, 1319–1329 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krzewski, K. & Coligan, J. E. Human NK cell lytic granules and regulation of their exocytosis. Front. Immunol. 3, 335 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fridman, S. Ontogeny of the osmoregulatory capacity of teleosts and the role of ionocytes. Front. Mar. Sci. 7, 709 (2020).

    Article 

    Google Scholar
     

  • Sturla, M., Masini, M. A., Prato, P., Grattarola, C. & Uva, B. Mitochondria-rich cells in gills and skin of an African lungfish, Protopterus annectens. Cell Tissue Res. 303, 351–358 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ip, Y. K. et al. Evidence for the involvement of branchial Vacuolar-type H(+)-ATPase in the acidification of the external medium by the West African lungfish, Protopterus annectens, exposed to ammonia-loading conditions. Comp. Biochem Physiol. A: Mol. Integr. Physiol. 273, 111297 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gil, J. & Weibel, E. R. Improvements in demonstration of lining layer of lung alveoli by electron microscopy. Respir. Physiol. 8, 13–36 (1969).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohen, M. et al. Lung single-cell signaling interaction map reveals basophil role in macrophage imprinting. Cell 175, 1031–1044.e18 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perry, S. F. The chloride cell: structure and function in the gills of freshwater fishes. Annu. Rev. Physiol. 59, 325–347 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morgan, M. & Tovell, P. W. A. The structure of the gill of the trout, Salmo gairdneri (Richardson). Z. f.ür. Zellforsch. Mikroskopische Anat. 142, 147–162 (1973).

    Article 
    CAS 

    Google Scholar
     

  • Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Enderle, J. D. in Introduction to Biomedical Engineering 3rd edn (eds. Enderle, J. D. & Bronzino, J. D.) 447–508 (Academic Press, 2012).

  • Roszell, B. R., Tao, J. Q., Yu, K. J., Huang, S. & Bates, S. R. Characterization of the Niemann-Pick C pathway in alveolar type II cells and lamellar bodies of the lung. Am. J. Physiol. Lung Cell Mol. Physiol. 302, L919–L932 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Page, M. M. et al. Upregulation of intracellular antioxidant enzymes in brain and heart during estivation in the African lungfish Protopterus dolloi. J. Comp. Physiol. B 180, 361–369 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kockx, M. et al. Secretion of Apolipoprotein E From Macrophages Occurs via a Protein Kinase A- and calcium-dependent pathway along the microtubule network. Circulation Res. 101, 607–616 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kraal, G., van der Laan, L. J., Elomaa, O. & Tryggvason, K. The macrophage receptor MARCO. Microbes Infect. 2, 313–316 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Turton, H. A. et al. Soluble P-selectin and von willebrand factor rise in healthy volunteers following non-exertional ascent to high altitude. Front. Physiol. 13, 825819 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hiong, K. C. et al. Aestivation induces changes in transcription and translation of coagulation factor II and fibrinogen gamma chain in the liver of the African lungfish Protopterus annectens. J. Exp. Biol. 218, 3717–3728 (2015).

    PubMed 

    Google Scholar
     

  • Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herzog, B., Pellet-Many, C., Britton, G., Hartzoulakis, B. & Zachary, I. C. VEGF binding to NRP1 is essential for VEGF stimulation of endothelial cell migration, complex formation between NRP1 and VEGFR2, and signaling via FAK Tyr407 phosphorylation. Mol. Biol. Cell 22, 2766–2776 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abhinand, C. S., Raju, R., Soumya, S. J., Arya, P. S. & Sudhakaran, P. R. VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. J. Cell Commun. Signal 10, 347–354 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, D., Shang, G., He, X., Bai, X.-C. & Zhang, X. Architecture of the Sema3A/PlexinA4/Neuropilin tripartite complex. Nat. Commun. 12, 3172 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiao, B. et al. Class-3 semaphorins: potent multifunctional modulators for angiogenesis-associated diseases. Biomed. Pharmacother. 137, 111329 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, C. & Jiang, X. Role of NRP-1 in VEGF-VEGFR2-independent tumorigenesis. Target Oncol. 11, 501–505 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, W. J. et al. Semaphorin-3C signals through Neuropilin-1 and PlexinD1 receptors to inhibit pathological angiogenesis. EMBO Mol. Med. 7, 1267–1284 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weber, R. & Jensen, F. Respiratory Adaptations in Lungfish Blood and Hemoglobin (eds Jørgrnsen, J. J. and Joss, J.) 283–303 (Science Publishers, 2011).

  • Loong, A. M. et al. Increased urea synthesis and/or suppressed ammonia production in the African lungfish, Protopterus annectens, during aestivation in air or mud. J. Comp. Physiol. B 178, 351–363 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mlewa, C., Green, J. & Dunbrack, R. The General Natural History of the African Lungfishes (eds Jorgensen, J. M. & Joss, J.) (CRC Press, 2010).

  • Evans, D. H., Piermarini, P. M. & Choe, K. P. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev. 85, 97–177 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inokuchi, M., Hiroi, J. & Kaneko, T. Why can Mozambique Tilapia acclimate to both freshwater and seawater? insights from the plasticity of ionocyte functions in the Euryhaline Teleost. Front. Physiol. 13, 914277 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson, J. M. & Laurent, P. Fish gill morphology: inside out. J. Exp. Zool. 293, 192–213 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Tseng, Y. C. & Hwang, P. P. Some insights into energy metabolism for osmoregulation in fish. Comp. Biochem Physiol. C: Toxicol. Pharm. 148, 419–429 (2008).


    Google Scholar
     

  • Feher, J. in Quantitative Human Physiology 2nd edn (ed. Feher, J.) 507–515 (Academic Press, 2012).

  • Shalhoub, J., Falck-Hansen, M. A., Davies, A. H. & Monaco, C. Innate immunity and monocyte-macrophage activation in atherosclerosis. J. Inflamm. 8, 9 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Parihar, A., Eubank, T. D. & Doseff, A. I. Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. J. Innate Immun. 2, 204–215 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, W. T., Gao, F., Gu, K. & Chen, D. K. The role of monocytes and macrophages in autoimmune diseases: a comprehensive review. Front Immunol. 10, 1140 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaspari, A. A. Innate and adaptive immunity and the pathophysiology of psoriasis. J. Am. Acad. Dermatol 54, S67–S80 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Alberts, B. et al. in Molecular Biology of the Cell. 4th edn (Dries, D. J.) (Garland Science, 2002).

  • Sender, R. & Milo, R. The distribution of cellular turnover in the human body. Nat. Med. 27, 45–48 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rudd, P. M., Elliott, T., Cresswell, P., Wilson, I. A. & Dwek, R. A. Glycosylation and the immune system. Science 291, 2370–2376 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Laurent, P. et al. The vasculature of the gills in the aquatic and aestivating lungfish (Protopterus aethiopicus). J. Morphol. 156, 173–208 (1978).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zardoya, R. & Meyer, A. The complete nucleotide sequence of the mitochondrial genome of the lungfish (Protopterus dolloi) supports its phylogenetic position as a close relative of land vertebrates. Genetics 142, 1249–1263 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joss, J. M. Lungfish evolution and development. Gen. Comp. Endocrinol. 148, 285–289 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raredon, M. S. B. et al. Single-cell connectomic analysis of adult mammalian lungs. Sci. Adv. 5, eaaw3851 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, M. et al. Characterization of the zebrafish cell landscape at single-cell resolution. Front. Cell Dev. Biol. 9 (2021).

  • West, A. C. et al. Immunologic profiling of the Atlantic Salmon Gill by single nuclei transcriptomics. Front. Immunol. 12, 669889 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sprague, J. et al. The Zebrafish Information Network (ZFIN): the zebrafish model organism database. Nucleic Acids Res. 31, 241–243 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frohnhöfer, H. G. et al. Spermidine, but not spermine, is essential for pigment pattern formation in zebrafish. Biol. Open 5, 736–744 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yi, X. et al. The effector of Hippo signaling, Taz, is required for formation of the micropyle and fertilization in zebrafish. PLoS Genet. 15, e1007408 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noël, E. S. et al. Organ-specific requirements for Hdac1 in liver and pancreas formation. Dev. Biol. 322, 237–250 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashworth, S. et al. Cofilin-1 inactivation leads to proteinuria-studies in zebrafish, mice and humans. PLoS ONE 5, e12626 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong, Y. M. et al. Induction of clusterin expression by neuronal cell death in Zebrafish. J. Genet. Genomics 41, 583–589 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Izumi, H. et al. A novel SLC34A2 mutation in a patient with pulmonary alveolar microlithiasis. Hum. Genome Var. 4, 16047 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Segawa, H., Shiozaki, Y., Kaneko, I. & Miyamoto, K. The role of sodium-dependent phosphate transporter in phosphate homeostasis. J. Nutr. Sci. Vitaminol. (Tokyo) 61, S119–S121 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, D., Haviland, D. L., Burns, A. R., Zsigmond, E. & Wetsel, R. A. A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells. Proc. Natl Acad. Sci. USA 104, 4449–4454 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bridges, J. P. et al. LPCAT1 regulates surfactant phospholipid synthesis and is required for transitioning to air breathing in mice. J. Clin. Invest. 120, 1736–1748 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takahashi, H., Sano, H., Chiba, H. & Kuroki, Y. Pulmonary surfactant proteins A and D: innate immune functions and biomarkers for lung diseases. Curr. Pharm. Des. 12, 589–598 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hiroshima, Y. et al. S100A8/A9 and S100A9 reduce acute lung injury. Immunol. Cell Biol. 95, 461–472 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, H. et al. Monocyte-derived alveolar macrophage apolipoprotein E participates in pulmonary fibrosis resolution. JCI Insight 5 (2020).

  • McClelland, M., Zhao, L., Carskadon, S. & Arenberg, D. Expression of CD74, the receptor for macrophage migration inhibitory factor, in non-small cell lung cancer. Am. J. Pathol. 174, 638–646 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan, T. W. et al. RNA editing in cancer impacts mRNA abundance in immune response pathways. Genome Biol. 21, 268 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Z. et al. Lys29-linkage of ASK1 by Skp1−Cullin 1−Fbxo21 ubiquitin ligase complex is required for antiviral innate response. eLife 5, e14087 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wegner, N. in Encyclopedia of Fish Physiology: From Genome to Environment Vol. 2 (eds Farrell, A. P., Stevens, E. D., Cech, J.J. & Richards, J.G.) 803–811 (Academic Press, 2011).

  • Laurent, P. & Dunel, S. Morphology of gill epithelia in fish. Am. J. Physiol. 238, R147–R159 (1980).

    CAS 
    PubMed 

    Google Scholar
     

  • Wright, D. E. Morphology of the gill epithelium of the Lungfish, Lepidosiren paradoxa. Cell Tissue Res. 153, 365–381 (1974).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adriaensen, D., Scheuermann, D. W., Timmermans, J. P. & De Groodt-Lasseel, M. H. Neuroepithelial endocrine cells in the lung of the lungfish Protopterus aethiopicus. An electron- and fluorescence-microscopical investigation. Acta Anat. (Basel) 139, 70–77 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Icardo, J. M. Lungs and gas bladders: morphological insights. Acta Histochem 120, 605–612 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Deprez, M. et al. A single-cell atlas of the human healthy airways. Am. J. Respir. Crit. Care Med 202, 1636–1645 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, E. et al. Maternal gut bacteria drive intestinal inflammation in offspring with neurodevelopmental disorders by altering the chromatin landscape of CD4+ T cells. Immunity 55, 145–158.e7 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, E., Tran, M., Sun, Y. & Huh, J. R. Isolation and analyses of lamina propria lymphocytes from mouse intestines. STAR Protoc. 3, 101366 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, C. et al. A portable and cost-effective microfluidic system for massively parallel single-cell transcriptome profiling. bioRxiv doi.org/10.1101/818450 (2019).

  • Wang, F. et al. Endothelial cell heterogeneity and microglia regulons revealed by a pig cell landscape at single-cell level. Nat. Commun. 13, 3620 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Young, M. D. & Behjati, S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. Gigascience 9 (2020).

  • McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e4 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16, 284–287 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 14, 128 (2013).

    Article 

    Google Scholar
     

  • Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Z. et al. Gene set knowledge discovery with Enrichr. Curr. Protoc. 1, e90 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link