World Health Organization. WHO Coronavirus (COVID-19) Dashboard. World Health Organization 1 covid19.who.int/table (World Health Organization, 2023).
Prather, K. A. et al. Airborne transmission of SARS-CoV-2. Science 370, 303–304 (2020).
Zhang, R., Li, Y., Zhang, A. L., Wang, Y. & Molina, M. J. Identifying airborne transmission as the dominant route for the spread of COVID-19. Proc. Natl Acad. Sci. USA 117, 14857–14863 (2020).
Leung, K., Lau, E. H. Y., Wong, C. K. H., Leung, G. M. & Wu, J. T. Estimating the transmission dynamics of SARS-CoV-2 Omicron BF.7 in Beijing after the adjustment of zero-COVID policy in November - December 2022. Nat. Med. 29, 579–582 (2023).
Lednicky, J. A. et al. Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. Int. J. Infect. Dis. 100, 476–482 (2020).
Nor, N. S. M. et al. Particulate matter (PM2.5) as a potential SARS-CoV-2 carrier. Sci. Rep. 11, 2508 (2021).
Liu, Y. et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 582, 557–560 (2020).
Ang, A. X. Y. et al. Airborne SARS-CoV-2 surveillance in hospital environment using high-flowrate air samplers and its comparison to surface sampling. Indoor Air 32, e12930 (2022).
Moore, G. et al. Detection of SARS-CoV-2 within the healthcare environment: a multi-centre study conducted during the first wave of the COVID-19 outbreak in England. J. Hosp. Infect. 108, 189–196 (2021).
Hadei, M. et al. Presence of SARS-CoV-2 in the air of public places and transportation. Atmos. Pollut. Res. 12, 302–306 (2021).
Nannu Shankar, S. et al. SARS-CoV-2 in residential rooms of two self-isolating persons with COVID-19. J. Aerosol Sci. 159, 105870 (2022).
Tao, Y. et al. SARS-CoV-2 and other airborne respiratory viruses in outdoor aerosols in three Swiss cities before and during the first wave of the COVID-19 pandemic. Environ. Int. 164, 107266 (2022).
Setti, L. et al. SARS-Cov-2RNA found on particulate matter of Bergamo in Northern Italy: first evidence. Environ. Res. 188, 109754 (2020).
Raynor, P. C. et al. Comparison of samplers collecting airborne influenza viruses: 1. Primarily impingers and cyclones. PLoS ONE 16, e0244977 (2021).
Cooper, C. W., Aithinne, K. A. N., Stevenson, B. S., Black, J. E. & Johnson, D. L. Comparison and evaluation of a high volume air sampling system for the collection of Clostridioides difficile endospore aerosol in health care environments. Am. J. Infect. Control 48, 1354–1360 (2020).
Lu, F., Gecgel, O., Ramanujam, A. & Botte, G. G. SARS-CoV-2 surveillance in indoor air using electrochemical sensor for continuous monitoring and real-time alerts. Biosensors 12, 523 (2022).
Dybwad, M., Skogan, G. & Blatny, J. M. Comparative testing and evaluation of nine different air samplers: End-to-end sampling efficiencies as specific performance measurements for bioaerosol applications. Aerosol Sci. Technol. 48, 282–295 (2014).
Sung, G., Ahn, C., Kulkarni, A., Shin, W. G. & Kim, T. Highly efficient in-line wet cyclone air sampler for airborne virus detection. J. Mech. Sci. Technol. 31, 4363–4369 (2017).
Agarwal, D. K. et al. Highly sensitive and ultra-rapid antigen-based detection of SARS-CoV-2 using nanomechanical sensor platform. Biosens. Bioelectron. 195, 113647 (2022).
Giovannini, G., Haick, H. & Garoli, D. Detecting COVID-19 from breath: a game changer for a big challenge. ACS Sens. 6, 1408–1417 (2021).
Khan, M. Z. H., Hasan, M. R., Hossain, S. I., Ahommed, M. S. & Daizy, M. Ultrasensitive detection of pathogenic viruses with electrochemical biosensor: state of the art. Biosens. Bioelectron. 166, 112431 (2020).
Luppa, P. B., Sokoll, L. J. & Chan, D. W. Immunosensors—principles and applications to clinical chemistry. Clin. Chim. Acta 314, 1–26 (2001).
Alafeef, M., Dighe, K., Moitra, P. & Pan, D. Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS Nano 14, 17028–17045 (2020).
El-Said, W. A. et al. Electrochemical microbiosensor for detecting COVID-19 in a patient sample based on gold microcuboids pattern. Biochip J. 15, 287–295 (2021).
Daniels, J. et al. A mask-based diagnostic platform for point-of-care screening of Covid-19. Biosens. Bioelectron. 192, 113486 (2021).
Yuede, C. M. et al. Rapid in vivo measurement of ß-amyloid reveals biphasic clearance kinetics in an Alzheimer’s mouse model. J. Exp. Med. 213, 677–685 (2016).
Prabhulkar, S., Piatyszek, R., Cirrito, J. R., Wu, Z. Z. & Li, C. Z. Microbiosensor for Alzheimer’s disease diagnostics: detection of amyloid beta biomarkers. J. Neurochem. 122, 374–381 (2012).
Izzo, N. J. et al. Preclinical and clinical biomarker studies of CT1812: a novel approach to Alzheimer’s disease modification. Alzheimer’s Dement. 17, 1365–1382 (2021).
Sigaev, G. I. et al. Development of a cyclone-based aerosol sampler with recirculating liquid film: theory and experiment. Aerosol Sci. Technol. 40, 293–308 (2006).
Esparza, T. J. et al. Nebulized delivery of a broadly neutralizing SARS-CoV-2 RBD-specific nanobody prevents clinical, virological, and pathological disease in a Syrian hamster model of COVID-19. MAbs 14, 2047144 (2022).
Esparza, T. J., Martin, N. P., Anderson, G. P., Goldman, E. R. & Brody, D. L. High affinity nanobodies block SARS-CoV-2 spike receptor binding domain interaction with human angiotensin converting enzyme. Sci. Rep. 10, 1–13 (2020).
willeke, K., Lin, X. & Grinshpun, S. A. Improved aerosol collection by combined impaction and centrifugal motion. Aerosol Sci. Technol. 28, 439–456 (1998).
Hering, S. V., Spielman, S. R. & Lewis, G. S. Moderated, water-based, condensational particle growth in a laminar flow. Aerosol Sci. Technol. 48, 401–408 (2014).
Zhou, L. et al. Breath-, air- and surface-borne SARS-CoV-2 in hospitals. J. Aerosol Sci. 152, 105693 (2021).
Zhou, J. et al. Investigating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surface and air contamination in an acute healthcare setting during the peak of the coronavirus disease 2019 (COVID-19) pandemic in London. Clin. Infect. Dis. 73, e1870–e1877 (2021).
Stern, R. A., Al-Hemoud, A., Alahmad, B. & Koutrakis, P. Levels and particle size distribution of airborne SARS-CoV-2 at a healthcare facility in Kuwait. Sci. Total Environ. 782, 146799 (2021).
Santarpia, J. L. et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci. Rep. 10, 1–8 (2020). 2020 101.
Dumont-Leblond, N. et al. Low incidence of airborne SARS-CoV-2 in acute care hospital rooms with optimized ventilation. Emerg. Microbes Infect. 9, 2597–2605 (2020).
Hu, J. et al. Distribution of airborne SARS-CoV-2 and possible aerosol transmission in Wuhan hospitals, China. Natl Sci. Rev. 7, 1865–1867 (2020).
Luhung, I. et al. Experimental parameters defining ultra-low biomass bioaerosol analysis. npj Biofilms Microbiomes 7, 1–11 (2021).
Kesavan, J., Schepers, D. & McFarland, A. R. Sampling and retention efficiencies of batch-type liquid-based bioaerosol samplers. Aerosol Sci. Technol. 44, 817–829 (2010).
McFarland, A. R. et al. Wetted wall cyclones for bioaerosol sampling. Aerosol Sci. Technol. 44, 241–252 (2010).
Borberg, E., Granot, E. & Patolsky, F. Ultrafast one-minute electronic detection of SARS-CoV-2 infection by 3CLpro enzymatic activity in untreated saliva samples. Nat. Commun. 13, 6375 (2022).
Torres, M. D. T., de Araujo, W. R., de Lima, L. F., Ferreira, A. L. & de la Fuente-Nunez, C. Low-cost biosensor for rapid detection of SARS-CoV-2 at the point of care. Matter 4, 2403–2416 (2021).
Truong, P. L., Yin, Y., Lee, D. & Ko, S. H. Advancement in COVID-19 detection using nanomaterial-based biosensors. Exploration 3, 20210232 (2023).
Song, C. et al. Numerical analysis of forces exerted on particles in cyclone separators. Powder Technol. 294, 437–448 (2016).
Darling, T. L. et al. mRNA-1273 and Ad26.COV2.S vaccines protect against the B.1.621 variant of SARS-CoV-2. Med 3, 309–324.e6 (2022).