• World Health Organization. WHO Coronavirus (COVID-19) Dashboard. World Health Organization 1 covid19.who.int/table (World Health Organization, 2023).

  • Prather, K. A. et al. Airborne transmission of SARS-CoV-2. Science 370, 303–304 (2020).

    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, R., Li, Y., Zhang, A. L., Wang, Y. & Molina, M. J. Identifying airborne transmission as the dominant route for the spread of COVID-19. Proc. Natl Acad. Sci. USA 117, 14857–14863 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leung, K., Lau, E. H. Y., Wong, C. K. H., Leung, G. M. & Wu, J. T. Estimating the transmission dynamics of SARS-CoV-2 Omicron BF.7 in Beijing after the adjustment of zero-COVID policy in November - December 2022. Nat. Med. 29, 579–582 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lednicky, J. A. et al. Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. Int. J. Infect. Dis. 100, 476–482 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nor, N. S. M. et al. Particulate matter (PM2.5) as a potential SARS-CoV-2 carrier. Sci. Rep. 11, 2508 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 582, 557–560 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ang, A. X. Y. et al. Airborne SARS-CoV-2 surveillance in hospital environment using high-flowrate air samplers and its comparison to surface sampling. Indoor Air 32, e12930 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, G. et al. Detection of SARS-CoV-2 within the healthcare environment: a multi-centre study conducted during the first wave of the COVID-19 outbreak in England. J. Hosp. Infect. 108, 189–196 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hadei, M. et al. Presence of SARS-CoV-2 in the air of public places and transportation. Atmos. Pollut. Res. 12, 302–306 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nannu Shankar, S. et al. SARS-CoV-2 in residential rooms of two self-isolating persons with COVID-19. J. Aerosol Sci. 159, 105870 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao, Y. et al. SARS-CoV-2 and other airborne respiratory viruses in outdoor aerosols in three Swiss cities before and during the first wave of the COVID-19 pandemic. Environ. Int. 164, 107266 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Setti, L. et al. SARS-Cov-2RNA found on particulate matter of Bergamo in Northern Italy: first evidence. Environ. Res. 188, 109754 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raynor, P. C. et al. Comparison of samplers collecting airborne influenza viruses: 1. Primarily impingers and cyclones. PLoS ONE 16, e0244977 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooper, C. W., Aithinne, K. A. N., Stevenson, B. S., Black, J. E. & Johnson, D. L. Comparison and evaluation of a high volume air sampling system for the collection of Clostridioides difficile endospore aerosol in health care environments. Am. J. Infect. Control 48, 1354–1360 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Lu, F., Gecgel, O., Ramanujam, A. & Botte, G. G. SARS-CoV-2 surveillance in indoor air using electrochemical sensor for continuous monitoring and real-time alerts. Biosensors 12, 523 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dybwad, M., Skogan, G. & Blatny, J. M. Comparative testing and evaluation of nine different air samplers: End-to-end sampling efficiencies as specific performance measurements for bioaerosol applications. Aerosol Sci. Technol. 48, 282–295 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sung, G., Ahn, C., Kulkarni, A., Shin, W. G. & Kim, T. Highly efficient in-line wet cyclone air sampler for airborne virus detection. J. Mech. Sci. Technol. 31, 4363–4369 (2017).

    Article 

    Google Scholar
     

  • Agarwal, D. K. et al. Highly sensitive and ultra-rapid antigen-based detection of SARS-CoV-2 using nanomechanical sensor platform. Biosens. Bioelectron. 195, 113647 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giovannini, G., Haick, H. & Garoli, D. Detecting COVID-19 from breath: a game changer for a big challenge. ACS Sens. 6, 1408–1417 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, M. Z. H., Hasan, M. R., Hossain, S. I., Ahommed, M. S. & Daizy, M. Ultrasensitive detection of pathogenic viruses with electrochemical biosensor: state of the art. Biosens. Bioelectron. 166, 112431 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luppa, P. B., Sokoll, L. J. & Chan, D. W. Immunosensors—principles and applications to clinical chemistry. Clin. Chim. Acta 314, 1–26 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alafeef, M., Dighe, K., Moitra, P. & Pan, D. Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS Nano 14, 17028–17045 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El-Said, W. A. et al. Electrochemical microbiosensor for detecting COVID-19 in a patient sample based on gold microcuboids pattern. Biochip J. 15, 287–295 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daniels, J. et al. A mask-based diagnostic platform for point-of-care screening of Covid-19. Biosens. Bioelectron. 192, 113486 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuede, C. M. et al. Rapid in vivo measurement of ß-amyloid reveals biphasic clearance kinetics in an Alzheimer’s mouse model. J. Exp. Med. 213, 677–685 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prabhulkar, S., Piatyszek, R., Cirrito, J. R., Wu, Z. Z. & Li, C. Z. Microbiosensor for Alzheimer’s disease diagnostics: detection of amyloid beta biomarkers. J. Neurochem. 122, 374–381 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Izzo, N. J. et al. Preclinical and clinical biomarker studies of CT1812: a novel approach to Alzheimer’s disease modification. Alzheimer’s Dement. 17, 1365–1382 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sigaev, G. I. et al. Development of a cyclone-based aerosol sampler with recirculating liquid film: theory and experiment. Aerosol Sci. Technol. 40, 293–308 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Esparza, T. J. et al. Nebulized delivery of a broadly neutralizing SARS-CoV-2 RBD-specific nanobody prevents clinical, virological, and pathological disease in a Syrian hamster model of COVID-19. MAbs 14, 2047144 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esparza, T. J., Martin, N. P., Anderson, G. P., Goldman, E. R. & Brody, D. L. High affinity nanobodies block SARS-CoV-2 spike receptor binding domain interaction with human angiotensin converting enzyme. Sci. Rep. 10, 1–13 (2020).

    Article 

    Google Scholar
     

  • willeke, K., Lin, X. & Grinshpun, S. A. Improved aerosol collection by combined impaction and centrifugal motion. Aerosol Sci. Technol. 28, 439–456 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hering, S. V., Spielman, S. R. & Lewis, G. S. Moderated, water-based, condensational particle growth in a laminar flow. Aerosol Sci. Technol. 48, 401–408 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, L. et al. Breath-, air- and surface-borne SARS-CoV-2 in hospitals. J. Aerosol Sci. 152, 105693 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, J. et al. Investigating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surface and air contamination in an acute healthcare setting during the peak of the coronavirus disease 2019 (COVID-19) pandemic in London. Clin. Infect. Dis. 73, e1870–e1877 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stern, R. A., Al-Hemoud, A., Alahmad, B. & Koutrakis, P. Levels and particle size distribution of airborne SARS-CoV-2 at a healthcare facility in Kuwait. Sci. Total Environ. 782, 146799 (2021).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Santarpia, J. L. et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci. Rep. 10, 1–8 (2020). 2020 101.


    Google Scholar
     

  • Dumont-Leblond, N. et al. Low incidence of airborne SARS-CoV-2 in acute care hospital rooms with optimized ventilation. Emerg. Microbes Infect. 9, 2597–2605 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, J. et al. Distribution of airborne SARS-CoV-2 and possible aerosol transmission in Wuhan hospitals, China. Natl Sci. Rev. 7, 1865–1867 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luhung, I. et al. Experimental parameters defining ultra-low biomass bioaerosol analysis. npj Biofilms Microbiomes 7, 1–11 (2021).

    Article 

    Google Scholar
     

  • Kesavan, J., Schepers, D. & McFarland, A. R. Sampling and retention efficiencies of batch-type liquid-based bioaerosol samplers. Aerosol Sci. Technol. 44, 817–829 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McFarland, A. R. et al. Wetted wall cyclones for bioaerosol sampling. Aerosol Sci. Technol. 44, 241–252 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Borberg, E., Granot, E. & Patolsky, F. Ultrafast one-minute electronic detection of SARS-CoV-2 infection by 3CLpro enzymatic activity in untreated saliva samples. Nat. Commun. 13, 6375 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torres, M. D. T., de Araujo, W. R., de Lima, L. F., Ferreira, A. L. & de la Fuente-Nunez, C. Low-cost biosensor for rapid detection of SARS-CoV-2 at the point of care. Matter 4, 2403–2416 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Truong, P. L., Yin, Y., Lee, D. & Ko, S. H. Advancement in COVID-19 detection using nanomaterial-based biosensors. Exploration 3, 20210232 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, C. et al. Numerical analysis of forces exerted on particles in cyclone separators. Powder Technol. 294, 437–448 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Darling, T. L. et al. mRNA-1273 and Ad26.COV2.S vaccines protect against the B.1.621 variant of SARS-CoV-2. Med 3, 309–324.e6 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Source link