• Sungnak, W. et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 26, 681–687. doi.org/10.1038/s41591-020-0868-6 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao, K. et al. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat. Rev. Genet. 22, 757–773. doi.org/10.1038/s41576-021-00408-x (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, L. et al. COVID-19: immunopathogenesis and immunotherapeutics. Signal Transduct. Targeted Ther. 5, doi.org/10.1038/s41392-020-00243-2 (2020).

  • Le, T. T. et al. The COVID-19 vaccine development landscape. Nat. Rev. Drug Discov. 19, 305–306. doi.org/10.1038/d41573-020-00073-5 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ciotti, M. et al. The covid-19 pandemic. Crit. Rev. Clin. Lab. Sci. 57, 365–388 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agarwal, A. et al. High-flow nasal cannula for acute hypoxemic respiratory failure in patients with covid-19: systematic reviews of effectiveness and its risks of aerosolization, dispersion, and infection transmission. Can. J. Anesthesia/Journal canadien d’anesthésie 67, 1217–1248 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bleier, B. S., Ramanathan, M. Jr. & Lane, A. P. Covid-19 vaccines may not prevent nasal sars-cov-2 infection and asymptomatic transmission. Otolaryngol.-Head Neck Surg. 164, 305–307 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kutter, J. S., Spronken, M. I., Fraaij, P. L., Fouchier, R. A. & Herfst, S. Transmission routes of respiratory viruses among humans. Curr. Opin. Virol. 28, 142–151. doi.org/10.1016/j.coviro.2018.01.001 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, Y. J. et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182, 429-446.e14. doi.org/10.1016/j.cell.2020.05.042 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tirupathi, R., Bharathidasan, K., Palabindala, V., Salim, S. A. & Al-Tawfiq, J. A. Comprehensive review of mask utility and challenges during the covid-19 pandemic. Infez. Med. 28, 57–63 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, T., Liu, Y., Li, M., Qian, X. & Dai, S. Y. Mask or no mask for covid-19: A public health and market study. PloS one 15, e0237691 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eikenberry, S. E. et al. To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the covid-19 pandemic. Infect. Dis. Modell. 5, 293–308 (2020).


    Google Scholar
     

  • Djupesland, P. G. Nasal drug delivery devices: Characteristics and performance in a clinical perspective-a review. Drug Deliv. Transl. Res. 3, 42–62. doi.org/10.1007/s13346-012-0108-9 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kublik, H. & Vidgren, M. Nasal delivery systems and their effect on deposition and absorption. Adv. Drug Deliv. Rev. 29, 157–177. doi.org/10.1016/s0169-409x(97)00067-7 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brüning, J. et al. Characterization of the airflow within an average geometry of the healthy human nasal cavity. Sci. Rep. 10, doi.org/10.1038/s41598-020-60755-3 (2020).

  • Wang, Y. & James, P. W. On the effect of anisotropy on the turbulent dispersion and deposition of small particles. Int. J. Multiphase Flow 25, 551–558 (1999).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Inthavong, K., Ge, Q., Se, C. M., Yang, W. & Tu, J. Simulation of sprayed particle deposition in a human nasal cavity including a nasal spray device. J. Aerosol Sci. 42, 100–113. doi.org/10.1016/j.jaerosci.2010.11.008 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nguyen, P. H. & Zhang, W. Design and computational modeling of fabric soft pneumatic actuators for wearable assistive devices. Sci. Rep. 10, 1–13 (2020).

    ADS 

    Google Scholar
     

  • Ertan Taskin, M., Zhang, T., Fraser, K. H., Griffith, B. P. & Wu, Z. J. Design optimization of a wearable artificial pump-lung device with computational modeling. J. Med. Dev. 6,(2012).

  • Chen, Y., Xu, Z., Cai, S., Lang, Y. & Kuo, C.-C. J. A saak transform approach to efficient, scalable and robust handwritten digits recognition. In 2018 Picture Coding Symposium (PCS), 174–178 (IEEE, 2018).

  • Cai, S., Xu, Z., Huang, Z., Chen, Y. & Kuo, C.-C. J. Enhancing cnn incremental learning capability with an expanded network. In 2018 IEEE International Conference on Multimedia and Expo (ICME), 1–6 (IEEE, 2018).

  • Du, J. et al. Electrode spacing and current distribution in electrical stimulation of peripheral nerve: a computational modeling study using realistic nerve models. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 4416–4419 (IEEE, 2021).

  • Du, J. et al. Electrical stimulation induced current distribution in peripheral nerves varies significantly with the extent of nerve damage: A computational study utilizing convolutional neural network and realistic nerve models. In International Work-Conference on the Interplay Between Natural and Artificial Computation, 526–535 (Springer, 2022).

  • Konda, A. et al. Aerosol filtration efficiency of common fabrics used in respiratory cloth masks. ACS Nano 14, 6339–6347. doi.org/10.1021/acsnano.0c03252 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jayaweera, M., Perera, H., Gunawardana, B. & Manatunge, J. Transmission of covid-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environ. Res. 188, 109819 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, W., Elankumaran, S. & Marr, L. C. Concentrations and size distributions of airborne influenza a viruses measured indoors at a health centre, a day-care centre and on aeroplanes. J. R. Soc. Interface 8, 1176–1184. doi.org/10.1098/rsif.2010.0686 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedlander, S. K. et al. Smoke, Dust, and Haze Vol. 198 (Oxford University Press, 2000).


    Google Scholar
     

  • Infection prevention and control of epidemic-and pandemic prone acute respiratory infections in health care (2014).

  • Marx, D., Williams, G. & Birkhoff, M. Intranasal drug administration - an attractive delivery route for some drugs. In Drug Discovery and Development-From Molecules to Medicinedoi.org/10.5772/59468 (InTech, 2015).

  • Inthavong, K., Tian, Z., Tu, J., Yang, W. & Xue, C. Optimising nasal spray parameters for efficient drug delivery using computational fluid dynamics. Comput. Biol. Med. 38, 713–726. doi.org/10.1016/j.compbiomed.2008.03.008 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tong, X., Dong, J., Shang, Y., Inthavong, K. & Tu, J. Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity. Comput. Biol. Med. 77, 40–48. doi.org/10.1016/j.compbiomed.2016.08.002 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, J., Shang, Y., Inthavong, K., Chan, H.-K. & Tu, J. Partitioning of dispersed nanoparticles in a realistic nasal passage for targeted drug delivery. Int. J. Pharm. 543, 83–95 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Strien, J. et al. Spray characteristics from nasal spray atomization. J. Aerosol Sci. 165, 106009 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Shrestha, K., Van Strien, J., Singh, N. & Inthavong, K. Primary break-up and atomization characteristics of a nasal spray. Plos one 15, e0236063 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kundoor, V. & Dalby, R. N. Effect of formulation- and administration-related variables on deposition pattern of nasal spray pumps evaluated using a nasal cast. Pharm. Res. 28, 1895–1904. doi.org/10.1007/s11095-011-0417-6 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X., Doub, W. H. & Guo, C. Assessment of the influence factors on nasal spray droplet velocity using phase-doppler anemometry (pda). AAPS PharmSciTech 12, 337–343 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Basu, S. et al. Numerical evaluation of spray position for improved nasal drug delivery. Sci. Rep. 10, 1–18 (2020).

    Article 

    Google Scholar
     

  • Kimbell, J. S. et al. Characterization of deposition from nasal spray devices using a computational fluid dynamics model of the human nasal passages. J. Aerosol Med. 20, 59–74. doi.org/10.1089/jam.2006.0531 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Jayaweera, M., Perera, H., Gunawardana, B. & Manatunge, J. Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environ. Res. 188, 109819. doi.org/10.1016/j.envres.2020.109819 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y., Deng, Z. & Shi, D. How effective is a mask in preventing covid-19 infection?. Med. Dev. Sens. 4, e10163 (2021).

    CAS 

    Google Scholar
     

  • Pan, J., Harb, C., Leng, W. & Marr, L. C. Inward and outward effectiveness of cloth masks, a surgical mask, and a face shield. Aerosol Sci. Technol. 55, 718–733 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Konda, A. et al. Aerosol filtration efficiency of common fabrics used in respiratory cloth masks. ACS Nano 14, 6339–6347 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inthavong, K. et al. A numerical study of spray particle deposition in a human nasal cavity. Aerosol Sci. Technol. 40, 1034–1045. doi.org/10.1080/02786820600924978 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shang, Y., Inthavong, K. & Tu, J. Development of a computational fluid dynamics model for mucociliary clearance in the nasal cavity. J. Biomech. 85, 74–83 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lucas, A. M. & Douglas, L. Principles underlying ciliary activity in the respiratory tract: Ii. a comparison of nasal clearance in man, monkey and other mammals. Arch. Otolaryngol. 20, 518–541 (1934).

    Article 

    Google Scholar
     

  • Pennington, A., Ratcliffe, J., Wilson, C. & Hardy, J. The influence of solution viscosity on nasal spray deposition and clearance. Int. J. Pharm. 43, 221–224 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Sosnowski, T. R., Rapiejko, P., Sova, J. & Dobrowolska, K. Impact of physicochemical properties of nasal spray products on drug deposition and transport in the pediatric nasal cavity model. Int. J. Pharm. 574, 118911. doi.org/10.1016/j.ijpharm.2019.118911 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pennington, A., Ratcliffe, J., Wilson, C. & Hardy, J. The influence of solution viscosity on nasal spray deposition and clearance. Int. J. Pharm. 43, 221–224. doi.org/10.1016/0378-5173(88)90277-3 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Djupesland, P. G. Nasal drug delivery devices: Characteristics and performance in a clinical perspective-a review. Drug Deliv. Transl. Res. 3, 42–62 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bee, J. S. et al. Response of a concentrated monoclonal antibody formulation to high shear. Biotechnol. Bioeng. 103, 936–943 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inthavong, K., Fung, M. C., Tong, X., Yang, W. & Tu, J. High resolution visualization and analysis of nasal spray drug delivery. Pharm. Res. 31, 1930–1937. doi.org/10.1007/s11095-013-1294-y (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Source link