• Boas, D. A. & Yodh, A. G. Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation. J. Opt. Soc. Am. A 14, 192 (1997).

    ADS 

    Google Scholar
     

  • Shang, Y., Li, T. & Yu, G. Clinical applications of near-infrared diffuse correlation spectroscopy and tomography for tissue blood flow monitoring and imaging. Physiol. Meas. 38, R1–R1 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buckley, E. M., Parthasarathy, A. B., Grant, P. E., Yodh, A. G. & Franceschini, M. A. Diffuse correlation spectroscopy for measurement of cerebral blood flow: Future prospects. Neurophotonics 1, 11009 (2014).


    Google Scholar
     

  • Kaya, K. et al. Intraoperative cerebral hemodynamic monitoring during carotid endarterectomy via diffuse correlation spectroscopy and near-infrared spectroscopy. Brain Sci. 12, 1025 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zavriyev, A. I. et al. The role of diffuse correlation spectroscopy and frequency-domain near-infrared spectroscopy in monitoring cerebral hemodynamics during hypothermic circulatory arrests. JTCVS Tech. 7, 161–177 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shang, Y. et al. Cerebral monitoring during carotid endarterectomy using near-infrared diffuse optical spectroscopies and electroencephalogram. Phys. Med. Biol 56, 3015–3032 (2011).

    PubMed 

    Google Scholar
     

  • Rajaram, A. et al. Cerebral perfusion and metabolic neuromonitoring during cardiopulmonary bypass. In Optical Tomography and Spectroscopy of Tissue (Vol. 11639, pp. 39). doi.org/10.1117/12.2578986 (2021).

  • Busch, D. R. et al. Continuous cerebral hemodynamic measurement during deep hypothermic circulatory arrest. Biomed. Opt. Express 7, 3461 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Selb, J. et al. Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients. Neurophotonics 5, 1 (2018).


    Google Scholar
     

  • Busch, D. R. et al. Detection of brain hypoxia based on noninvasive optical monitoring of cerebral blood flow with diffuse correlation spectroscopy. Neurocrit. Care 30, 72–80 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milej, D. et al. Characterizing dynamic cerebral vascular reactivity using a hybrid system combining time-resolved near-infrared and diffuse correlation spectroscopy. Biomed. Opt. Express 11, 4571–4585 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruesch, A. et al. Estimating intracranial pressure using pulsatile cerebral blood flow measured with diffuse correlation spectroscopy. Biomed. Opt. Express 11, 1462 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flanders, T. M. et al. Optical detection of intracranial pressure and perfusion changes in neonates with hydrocephalus. J. Pediatr. 236, 54-61.e1 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tabassum, S. M. et al. Clinical translation of intracranial pressure sensing with diffuse correlation spectroscopy. J. Neurosurg. 1, 20 (2022).


    Google Scholar
     

  • Wu, K.-C. et al. Validation of diffuse correlation spectroscopy measures of critical closing pressure against transcranial Doppler ultrasound in stroke patients. J. Biomed. Opt. 26, 36008–36009 (2021).


    Google Scholar
     

  • Baker, W. B. et al. Noninvasive optical monitoring of critical closing pressure and arteriole compliance in human subjects. J. Cereb. Blood Flow Metab. 37, 2691–2705 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Selb, J. et al. Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: Simulations and experimental findings during hypercapnia. Neurophotonics 1, 15005 (2014).


    Google Scholar
     

  • Beauchamp, M. S. et al. The developmental trajectory of brain-scalp distance from birth through childhood: Implications for functional neuroimaging. PLoS ONE 6, e24981–e24981 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, N. J. Variance in cortical depth across the brain surface: Implications for transcranial stimulation of the brain. Eur. J. Neurosci. doi.org/10.1111/ejn.14957 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Xu, J., Jahromi, A. K., Brake, J., Robinson, J. E. & Yang, C. Interferometric speckle visibility spectroscopy (ISVS) for human cerebral blood flow monitoring. APL Photonics 5, 126102 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Zhou, W. et al. Functional interferometric diffusing wave spectroscopy of the human brain. Sci. Adv. 7, eabe0150–eabe0150 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, W. et al. Multi-exposure interferometric diffusing wave spectroscopy. Opt. Lett. 46, 4498–4501 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, M. B., Boas, D. A., Sakadzic, S., Franceschini, M. A. & Carp, S. A. Interferometric diffuse correlation spectroscopy improves measurements at long source–detector separation and low photon count rate. J. Biomed. Opt. 25, 97004 (2020).

    CAS 

    Google Scholar
     

  • James, E., Powell, S. & Munro, P. Performance optimisation of a holographic Fourier domain diffuse correlation spectroscopy instrument. Biomed. Opt. Express 13, 3836 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samaei, S., Nowacka, K., Gerega, A., Pastuszak, Ż & Borycki, D. Continuous-wave parallel interferometric near-infrared spectroscopy (CW πNIRS) with a fast two-dimensional camera. Biomed. Opt. Express 13, 5753 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, W. et al. Fast and sensitive diffuse correlation spectroscopy with highly parallelized single photon detection. APL Photonics 6, 26106 (2021).


    Google Scholar
     

  • Sie, E. J. et al. High-sensitivity multispeckle diffuse correlation spectroscopy. Neurophotonics 7, 35010 (2020).

    CAS 

    Google Scholar
     

  • Wayne, M. A. et al. Massively parallel, real-time multispeckle diffuse correlation spectroscopy using a 500 × 500 SPAD camera. Biomed. Opt. Express 14, 703 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ling, H., Gui, Z., Hao, H. & Shang, Y. Enhancement of diffuse correlation spectroscopy tissue blood flow measurement by acoustic radiation force. Biomed. Opt. Express 11, 301 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Robinson, M. B. et al. Characterization of continuous wave ultrasound for acousto-optic modulated diffuse correlation spectroscopy (AOM-DCS). Biomed. Opt. Express 11, 3071 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsalach, A. et al. Depth selective acousto-optic flow measurement. Biomed. Opt. Express 6, 4871–4886 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sutin, J. et al. Time-domain diffuse correlation spectroscopy. Optica 3, 1006 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ozana, N. et al. Functional time domain diffuse correlation spectroscopy. Front. Neurosci. 16, 1123 (2022).


    Google Scholar
     

  • Zhao, M., Zhou, W., Aparanji, S., Mazumder, D. & Srinivasan, V. Interferometric diffusing wave spectroscopy imaging with an electronically variable time-of-flight filter. Optica 10, 42–52 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Borycki, D., Kholiqov, O. & Srinivasan, V. J. Interferometric near-infrared spectroscopy directly quantifies optical field dynamics in turbid media. Optica 3, 1471 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pagliazzi, M. et al. Time resolved speckle contrast optical spectroscopy at quasi-null source-detector separation for non-invasive measurement of microvascular blood flow. Biomed. Opt. Express 12, 1499 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poon, C.-S. et al. First-in-clinical application of a time-gated diffuse correlation spectroscopy system at 1064 nm using superconducting nanowire single photon detectors in a neuro intensive care unit. Biomed. Opt. Express 13, 1344 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zilpelwar, S. et al. A model of dynamic speckle evolution for evaluating laser speckle contrast measurements of tissue dynamics. Biomed. Opt. Express 13, 6533–6549 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dragojević, T. et al. Compact, multi-exposure speckle contrast optical spectroscopy (SCOS) device for measuring deep tissue blood flow. Biomed. Opt. Express 9, 322 (2018).

    PubMed 

    Google Scholar
     

  • Valdes, C. P. et al. Speckle contrast optical spectroscopy, a non-invasive, diffuse optical method for measuring microvascular blood flow in tissue. Biomed. Opt. Express 5, 2769 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carp, S. A. et al. Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light. J. Biomed. Opt. 25, 97003–97004 (2020).

    CAS 

    Google Scholar
     

  • Ozana, N. et al. Superconducting nanowire single-photon sensing of cerebral blood flow. Neurophotonics 8, 35006 (2021).

    CAS 

    Google Scholar
     

  • Robinson, M. B. et al. Diffuse correlation spectroscopy beyond the water peak enabled by cross-correlation of the signals from InGaAs/InP single photon detectors. IEEE Trans. Biomed. Eng. 69, 1943–1953 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, W., Kholiqov, O., Chong, S. P. & Srinivasan, V. J. Highly parallel, interferometric diffusing wave spectroscopy for monitoring cerebral blood flow dynamics. Optica 5, 518 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siegert, A. J. F. On the fluctuations in signals returned by many independently moving scatterers. (Radiation Laboratory, Massachusetts Institute of Technology, 1943).

  • Bellini, T., Glaser, M. A., Clark, N. A. & Degiorgio, V. Effects of finite laser coherence in quasielastic multiple scattering. Phys. Rev. A (Coll Park) 44, 5215 (1991).

    ADS 
    CAS 

    Google Scholar
     

  • Pine, D. J., Weitz, D. A., Chaikin, P. M. & Herbolzheimer, E. Diffusing wave spectroscopy. Phys. Rev. Lett. 60, 1134–1137 (1988).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Boas, D. A. et al. Establishing the diffuse correlation spectroscopy signal relationship with blood flow. Neurophotonics 3, 31412 (2016).


    Google Scholar
     

  • Verdecchia, K., Diop, M., Morrison, L. B., Lee, T.-Y. & Lawrence, K. S. Assessment of the best flow model to characterize diffuse correlation spectroscopy data acquired directly on the brain. Biomed. Opt. Express 6, 4288 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakadžic, S. et al. Theoretical model of blood flow measurement by diffuse correlation spectroscopy. J. Biomed. Opt. 22, 27006 (2017).

    PubMed 

    Google Scholar
     

  • Carp, S. A. et al. Due to intravascular multiple sequential scattering, diffuse correlation spectroscopy of tissue primarily measures relative red blood cell motion within vessels. Biomed. Opt. Express 2, 2047 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du Le, V. N. & Srinivasan, V. J. Beyond diffuse correlations: Deciphering random flow in time-of-flight resolved light dynamics. Opt. Express 28, 11191 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koppel, D. Statistical accuracy in FCS. Phys. Rev. A (Coll Park) 10, 1938–1945 (1974).

    ADS 

    Google Scholar
     

  • American National Standard for Safe Use of Lasers. ANSI Z136.1-2007. (2007).

  • Farzam, P. et al. Fast diffuse correlation spectroscopy (DCS) for non-invasive measurement of intracranial pressure (ICP)(Conference Presentation). In Clinical and Translational Neurophotonics (eds. Madsen, S. J. & Yang, V. X. D.) vol. 10050 100500U-100500U (International Society for Optics and Photonics, 2017).

  • Fischer, K., Guensch, D. P. & Friedrich, M. G. Response of myocardial oxygenation to breathing manoeuvres and adenosine infusion. Eur. Heart J. Cardiovasc. Imaging 16, 395–401 (2015).

    PubMed 

    Google Scholar
     

  • Parkes, M. J., Green, S., Stevens, A. M. & Clutton-Brock, T. H. Assessing and ensuring patient safety during breath-holding for radiotherapy. Br. J. Radiol. 87, 20140454 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perini, R. et al. Heart rate and blood pressure time courses during prolonged dry apnoea in breath-hold divers. Eur. J. Appl. Physiol. 104, 1–7 (2008).

    ADS 
    PubMed 

    Google Scholar
     

  • Wilson, D. F. et al. Effect of hyperventilation on oxygenation of the brain cortex of newborn piglets. J. Appl. Physiol. 70, 2691–2696 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • Meyer, J. S., Gotoh, F., Takagi, Y. & Kakimi, R. Cerebral hemodynamics, blood gases, and electrolytes during breath-holding and the Valsalva maneuver. Circulation 33, II–35 (1966).

    CAS 

    Google Scholar
     

  • Baker, W. B. et al. Pressure modulation algorithm to separate cerebral hemodynamic signals from extracerebral artifacts. Neurophotonics 2, 35004 (2015).


    Google Scholar
     

  • Skytioti, M., Søvik, S. & Elstad, M. Respiration-related cerebral blood flow variability increases during control-mode non-invasive ventilation in normovolemia and hypovolemia. Eur. J. Appl. Physiol. 117, 2237–2249 (2017).

    PubMed 

    Google Scholar
     

  • Fang, Q. & Boas, D. A. Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Opt. Express 17, 20178–20190 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Larsen, J. et al. Breath holding for 20 s following extended expiration is a practical, effective and robust standard when measuring cerebrovascular reactivity in healthy adults using BOLD fMRI at 3 T. Neuroimage Rep. 1, 100021 (2021).


    Google Scholar
     

  • Zerweck, L., Hauser, T.-K., Roder, C. & Klose, U. Investigation of the BOLD-based MRI signal time course during short breath-hold periods for estimation of the cerebrovascular reactivity. SN Compr. Clin. Med. 2, 1551–1562 (2020).

    CAS 

    Google Scholar
     

  • Wu, M. M. et al. Complete head cerebral sensitivity mapping for diffuse correlation spectroscopy using subject-specific magnetic resonance imaging models. Biomed. Opt. Express 13, 1131 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, M. M. et al. Improved accuracy of cerebral blood flow quantification in the presence of systemic physiology cross-talk using multi-layer Monte Carlo modeling. Neurophotonics 8, 15001 (2021).


    Google Scholar
     

  • Zhao, H., Sathialingam, E. & Buckley, E. M. Accuracy of diffuse correlation spectroscopy measurements of cerebral blood flow when using a three-layer analytical model. Biomed. Opt. Express 12, 7149–7161 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • James, E. & Powell, S. Fourier domain diffuse correlation spectroscopy with heterodyne holographic detection. Biomed. Opt. Express 11, 6755 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link