• Forster, H. V., Haouzi, P. & Dempsey, J. A. Control of breathing during exercise. Compr. Physiol. 2, 743–777 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Sunshine, M. D., Sutor, T. W., Fox, E. J. & Fuller, D. D. Targeted activation of spinal respiratory neural circuits. Exp. Neurol. 328, 113256 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baekey, D. M., Molkov, Y. I., Paton, J. F., Rybak, I. A. & Dick, T. E. Effect of baroreceptor stimulation on the respiratory pattern: Insights into respiratory-sympathetic interactions. Respir. Physiol. Neurobiol. 174, 135–145 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krogh, A. & Lindhard, J. The regulation of respiration and circulation during the initial stages of muscular work. J. Physiol. 47, 112–136 (1913).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eldridge, F. L., Millhorn, D. E. & Waldrop, T. G. Exercise hyperpnea and locomotion: Parallel activation from the hypothalamus. Science 211, 844–846 (1981).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Morin, D. & Viala, D. Coordinations of locomotor and respiratory rhythms in vitro are critically dependent on hindlimb sensory inputs. J. Neurosci. 22, 4756–4765 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Isaev, G. G., Gerasimenko, Y. P., Selionov, V. A. & Kartashova, N. A. Respiratory responses to voluntary and reflexly-induced stepping movements in normal subjects and spinal patients. J. Physiol. Pharmacol. 55, 77–82 (2004).

    PubMed 

    Google Scholar
     

  • Le Gal, J. P. et al. Modulation of respiratory network activity by forelimb and hindlimb locomotor generators. Eur. J. Neurosci. 52, 3181–3195 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sato, Y., Katayama, K., Ishida, K. & Miyamura, M. Ventilatory and circulatory responses at the onset of voluntary exercise and passive movement in children. Eur. J. Appl. Physiol. 83, 516–523 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feldman, J. L. Neurophysiology of breathing in mammals. In Handbook of Physiology; Section 1: The Nervous System; Volume IV: Intrinsic Regulatory Systems of the Brain. (ed. Bloom, F. E.) 463–524 (American Physiological Society. Bethesda, MD, 1986).

  • Shevtsova, N. A., Marchenko, V. & Bezdudnaya, T. Modulation of respiratory system by limb muscle afferents in intact and injured spinal cord. Front. Neurosci. 13, 289 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdala, A. P., Rybak, I. A., Smith, J. C. & Paton, J. F. Abdominal expiratory activity in the rat brainstem-spinal cord in situ: Patterns, origins and implications for respiratory rhythm generation. J. Physiol. 587, 3539–3559 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Potts, J. T., Rybak, I. A. & Paton, J. F. Respiratory rhythm entrainment by somatic afferent stimulation. J. Neurosci. 25, 1965–1978 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giraudin, A., Cabirol-Pol, M. J., Simmers, J. & Morin, D. Intercostal and abdominal respiratory motoneurons in the neonatal rat spinal cord: Spatiotemporal organization and responses to limb afferent stimulation. J. Neurophysiol. 99, 2626–2640 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Giraudin, A., Le Bon-Jégo, M., Cabirol, M. J., Simmers, J. & Morin, D. Spinal and pontine relay pathways mediating respiratory rhythm entrainment by limb proprioceptive inputs in the neonatal rat. J. Neurosci. 32, 11841–11853 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le Gal, J. P., Juvin, L., Cardoit, L., Thoby-Brisson, M. & Morin, D. Remote control of respiratory neural network by spinal locomotor generators. PLoS ONE 9(2), e89670 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yazawa, I. Reciprocal functional interactions between the brainstem and the lower spinal cord. Front. Neurosci. 8, 124 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le Gal, J. P., Juvin, L., Cardoit, L. & Morin, D. Bimodal respiratory-locomotor neurons in the neonatal rat spinal cord. J. Neurosci. 36, 926–937 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loram, I. D. & Lakie, M. Direct measurement of human ankle stiffness during quiet standing: The intrinsic mechanical stiffness is insufficient for stability. J. Physiol. 545, 1041–1053 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eldridge, F. L., Millhorn, D. E., Kiley, J. P. & Waldrop, T. G. Stimulation by central command of locomotion, respiration and circulation during exercise. Respir. Physiol. 59, 313–337 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Horn, E. M. & Waldrop, T. G. Suprapontine control of respiration. Respir. Physiol. 114, 201–211 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bell, H. J. & Duffin, J. Respiratory response to passive limb movement is suppressed by a cognitive task. J. Appl. Physiol. 1985(97), 2112–2120 (2004).

    Article 

    Google Scholar
     

  • Johnson, S. M., Smith, J. C., Funk, G. D. & Feldman, J. L. Pacemaker behavior of respiratory neurons in medullary slices from neonatal rat. J. Neurophysiol. 72, 2598–2608 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suzue, T. Respiratory rhythm generation in the in vitro brain stem-spinal cord preparation of the neonatal rat. J. Physiol. 354, 173–183 (1984).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Onimaru, H. Studies of the respiratory center using isolated brainstem-spinal cord preparations. Neurosci. Res. 21, 183–190 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dubayle, D. & Viala, D. Interactions between medullary and spinal respiratory rhythm generators in the in vitro brainstem spinal cord preparation from newborn rats. Exp. Brain. Res. 109, 1–8 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nicholls, J. G., Stewart, R. R., Erulkar, S. D. & Saunders, N. R. Reflexes, fictive respiration and cell division in the brain and spinal cord of the newborn opossum, Monodelphis domestica, isolated and maintained in vitro. J. Exp. Biol. 152, 1–15 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eugenín, J. & Nicholls, J. G. Control of respiration in the isolated central nervous system of the neonatal opossum, Monodelphis domestica. Brain. Res. Bull. 53, 605–613 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Wilson, R. J., Chersa, T. & Whelan, P. J. Tissue PO2 and the effects of hypoxia on the generation of locomotor-like activity in the in vitro spinal cord of the neonatal mouse. Neuroscience 117, 183–196 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohammadshirazi, A., Apicella, R., Zylberberg, B. A., Mazzone, G. L. & Taccola, G. Suprapontine structures modulate brainstem and spinal networks. Cell. Mol. Neurobiol. doi.org/10.1007/s10571-023-01321-z (2023).

  • Dingu, N., Deumens, R. & Taccola, G. Afferent input induced by rhythmic limb movement modulates spinal neuronal circuits in an innovative robotic in vitro preparation. Neuroscience 394, 44–59 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis, M. R., Magnusson, J. L. & Cummings, K. J. Increased central cholinergic drive contributes to the apneas of serotonin-deficient rat pups during active sleep. J. Appl. Physiol. 1985(126), 1175–1183 (2019).

    Article 

    Google Scholar
     

  • Voituron, N., Frugière, A., Gros, F., Macron, J. M. & Bodineau, L. Diencephalic and mesencephalic influences on ponto-medullary respiratory control in normoxic and hypoxic conditions: An in vitro study on central nervous system preparations from newborn rat. Neuroscience 132, 843–854 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rybak, I. A., Shevtsova, N. A., St-John, W. M., Paton, J. F. & Pierrefiche, O. Endogenous rhythm generation in the pre-Bötzinger complex and ionic currents: modelling and in vitro studies. Eur. J. Neurosci. 18, 239–257 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Julien, C., Bairam, A. & Joseph, V. Chronic intermittent hypoxia reduces ventilatory long-term facilitation and enhances apnea frequency in newborn rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1356–R1366 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nicolosi, A. et al. Acute exposure to zinc oxide nanoparticles critically disrupts operation of the respiratory neural network in neonatal rat. Neurotoxicology 67, 150–160 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, C. F., Kim, E. J., Callaway, E. M. & Feldman, J. L. Monosynaptic projections to excitatory and inhibitory preBötzinger complex neurons. Front. Neuroanat. 14, 58 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okada, Y., Kawai, A., Mückenhoff, K. & Scheid, P. Role of the pons in hypoxic respiratory depression in the neonatal rat. Respir. Physiol. 111, 55–63 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bracci, E., Beato, M. & Nistri, A. Afferent inputs modulate the activity of a rhythmic burst generator in the rat disinhibited spinal cord in vitro. J. Neurophysiol. 77, 3157–3167 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morgado-Valle, C., Smith, J. C., Fernandez-Ruiz, J., Lopez-Meraz, L. & Beltran-Parrazal, L. Modulation of inspiratory burst duration and frequency by bombesin in vitro. Pflugers Arch. 475, 101–117 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koepchen, H. P., Abel, H. H. & Klüssendorf, D. Integrative neurovegetative and motor control: Phenomena and theory. Funct. Neurol. 2(4), 389–406 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • Budzińska, K. & Romaniuk, J. R. The role of raphe and tractus solitarius neuronal structures in the modulation of respiratory pattern in rabbits. Acta Neurobiol. Exp. (Wars) 55, 155–164 (1995).

    PubMed 

    Google Scholar
     

  • Berger, I. et al. NMDA receptors are involved at the ventrolateral nucleus tractus solitarii for termination of inspiration. Eur. J. Pharmacol. 277, 195–208 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wasserman, A. M., Sahibzada, N., Hernandez, Y. M. & Gillis, R. A. Specific subnuclei of the nucleus tractus solitarius play a role in determining the duration of inspiration in the rat. Brain Res. 880, 118–130 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poon, C. S. & Song, G. Bidirectional plasticity of pontine pneumotaxic postinspiratory drive: Implication for a pontomedullary respiratory central pattern generator. Prog. Brain Res. 209, 235–254 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Miyazaki, M., Arata, A., Tanaka, I. & Ezure, K. Activity of rat pump neurons is modulated with central respiratory rhythm. Neurosci. Lett. 249, 61–64 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miyazaki, M., Tanaka, I. & Ezure, K. Excitatory and inhibitory synaptic inputs shape the discharge pattern of pump neurons of the nucleus tractus solitarii in the rat. Exp. Brain Res. 129, 191–200 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Portillo, F. & Pásaro, R. Axonal projections to the ventrolateral nucleus of the solitary tract revealed by double labelling of retrograde fluorescent markers in the cat. Neurosci. Lett. 76, 280–284 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Núñez-Abades, P. A., Morillo, A. M. & Pásaro, R. Brainstem connections of the rat ventral respiratory subgroups: Afferent projections. J. Auton. Nerv. Syst. 42, 99–118 (1993).

    Article 
    PubMed 

    Google Scholar
     

  • Schwaber, J. S., Kapp, B. S., Higgins, G. A. & Rapp, P. R. Amygdaloid and basal forebrain direct connections with the nucleus of the solitary tract and the dorsal motor nucleus. J. Neurosci. 2, 1424–1438 (1982).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva-Carvalho, L., Dawid-Milner, M. S. & Spyer, K. M. The pattern of excitatory inputs to the nucleus tractus solitarii evoked on stimulation in the hypothalamic defence area in the cat. J. Physiol. 487, 727–737 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Del Negro, C. A., Kam, K., Hayes, J. A. & Feldman, J. L. Asymmetric control of inspiratory and expiratory phases by excitability in the respiratory network of neonatal mice in vitro. J. Physiol. 587, 1217–1231 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feldman, J. L., Del Negro, C. A. & Gray, P. A. Understanding the rhythm of breathing: So near, yet so far. Annu. Rev. Physiol. 75, 423–452 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schiefer, M., Gamble, J. & Strohl, K. P. Sciatic nerve stimulation and its effects on upper airway resistance in the anesthetized rabbit model relevant to sleep apnea. J. Appl. Physiol. 1985(125), 763–769 (2018).

    Article 

    Google Scholar
     

  • Kanbar, R., Stornetta, R. L. & Guyenet, P. G. Sciatic nerve stimulation activates the retrotrapezoid nucleus in anesthetized rats. J. Neurophysiol. 116, 2081–2092 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korsak, A., Sheikhbahaei, S., Machhada, A., Gourine, A. V. & Huckstepp, R. T. R. The role of parafacial neurons in the control of breathing during exercise. Sci. Rep. 8(1), 400 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haxhiu, M. A., van Lunteren, E., Mitra, J., Cherniack, N. S. & Strohl, K. P. Comparison of the responses of the diaphragm and upper airway muscles to central stimulation of the sciatic nerve. Respir. Physiol. 58, 65–76 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strohl, K. P. et al. Nasal and tracheal responses to chemical and somatic afferent stimulation in anesthetized cats. J. Appl. Physiol. 1985(65), 870–877 (1988).

    Article 

    Google Scholar
     

  • Fukushi, I., Yokota, S. & Okada, Y. The role of the hypothalamus in modulation of respiration. Respir. Physiol. Neurobiol. 265, 172–179 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Beatty, J. A., Kramer, J. M., Plowey, E. D. & Waldrop, T. G. Physical exercise decreases neuronal activity in the posterior hypothalamic area of spontaneously hypertensive rats. J. Appl. Physiol. 1985(98), 572–578 (2005).

    Article 

    Google Scholar
     

  • Waldrop, T. G. & Stremel, R. W. Muscular contraction stimulates posterior hypothalamic neurons. Am. J. Physiol. 256, R348–R356 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • Nolán, P. C. & Waldrop, T. G. Integrative role of medullary neurons of the cat during exercise. Exp. Physiol. 82, 547–558 (1997).

    Article 
    PubMed 

    Google Scholar
     

  • Iwamoto, G. A., Wappel, S. M., Fox, G. M., Buetow, K. A. & Waldrop, T. G. Identification of diencephalic and brainstem cardiorespiratory areas activated during exercise. Brain Res. 726, 109–122 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ichiyama, R. M., Gilbert, A. B., Waldrop, T. G. & Iwamoto, G. A. Changes in the exercise activation of diencephalic and brainstem cardiorespiratory areas after training. Brain Res. 947, 225–233 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kramer, J. M. & Waldrop, T. G. Neural control of the cardiovascular system during exercise. An integrative role for the vestibular system. J. Vestib. Res. 8, 71–80 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Basnayake, S. et al. Identifying cardiovascular neurocircuitry involved in the exercise pressor reflex in humans using functional neurosurgery. J. Appl. Physiol. 1985(110), 881–891 (2011).

    Article 

    Google Scholar
     

  • Thornton, J. M. et al. Identification of higher brain centres that may encode the cardiorespiratory response to exercise in humans. J. Physiol. 533, 823–836 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lutherer, L. O., Williams, J. L. & Everse, S. J. Neurons of the rostral fastigial nucleus are responsive to cardiovascular and respiratory challenges. J. Auton. Nerv. Syst. 27, 101–111 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Babb, T. G., Wood, H. E. & Mitchell, G. S. Short- and long-term modulation of the exercise ventilatory response. Med. Sci. Sports Exerc. 42, 1681–1687 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wood, H. E., Fatemian, M. & Robbins, P. A. A learned component of the ventilatory response to exercise in man. J. Physiol. 553, 967–974 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitchell, G. S. & Johnson, S. M. Neuroplasticity in respiratory motor control. J. Appl. Physiol. 1985(94), 358–374 (2003).

    Article 

    Google Scholar
     

  • Mitchell, G. S. et al. Invited review: Intermittent hypoxia and respiratory plasticity. J. Appl. Physiol. 1985(90), 2466–2475 (2001).

    Article 

    Google Scholar
     

  • Mitchell, G. S., Sloan, H. E., Foley, K. T., Brownfield, M. S. & Miletic, V. Increased serotonin in the thoracic spinal cord of goats following chronic thoracic dorsal rhizotomy (TDR). FASEB J. 6, A1507 (1992).


    Google Scholar
     

  • Martin, P. A. & Mitchell, G. S. Long-term modulation of the exercise ventilatory response in goats. J. Physiol. 470, 601–617 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baker-Herman, T. L. et al. BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nat. Neurosci. 7, 48–55 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Babb, T. G. Ventilation and respiratory mechanics during exercise in younger subjects breathing CO2 or HeO2. Respir. Physiol. 109, 15–28 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitchell, G. S., Turner, D. L., Henderson, D. R. & Foley, K. T. Spinal serotonin receptor activation modulates the exercise ventilatory response with increased dead space in goats. Respir. Physiol. Neurobiol. 161, 230–238 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camargo Pires-Neto, R. et al. Very early passive cycling exercise in mechanically ventilated critically ill patients: Physiological and safety aspects-a case series. PLoS ONE 8(9), e74182 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malone, I. G., Nosacka, R. L., Nash, M. A., Otto, K. J. & Dale, E. A. Electrical epidural stimulation of the cervical spinal cord: Implications for spinal respiratory neuroplasticity after spinal cord injury. J. Neurophysiol. 126, 607–626 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danneman, P. J. & Mandrell, T. D. Evaluation of five agents/methods for anesthesia of neonatal rats. Lab. Anim. Sci. 47, 386–395 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Zimmer, M. B., Fong, A. Y. & Milsom, W. K. Effect of temperature, age and the pons on respiratory rhythm in the rat brainstem-spinal cord. Respir. Physiol. Neurobiol. 273, 103333 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Bracci, E., Ballerini, L. & Nistri, A. Spontaneous rhythmic bursts induced by pharmacological block of inhibition in lumbar motoneurons of the neonatal rat spinal cord. J. Neurophysiol. 75, 640–647 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Source link