• Cowings P inventor, Autogenic-Feedback Training Exercise (AFTE) Method and System. US1997.

  • Cowings PS, Toscano WB, Timbers A, Casey C, Hufnagel J. Autogenic Feedback Training Exercise: A Treatment for Airsickness in Military Pilots. Int J Aviat Psychol. 2005;15:p395–412.

    Article 

    Google Scholar
     

  • Cowings PS. Autogenic-feedback training : a potential treatment for post-flight orthostatic intolerance in aerospace crews. Moffett Field, Calif. [Springfield, Va.]: National Aeronautics and Space Administration, Ames Research Center ; [National Technical Information Service, distributor]; 1994.

  • Scott JM, Warburton DE, Williams D, Whelan S, Krassioukov A. Challenges, concerns and common problems: physiological consequences of spinal cord injury and microgravity. Spinal Cord. 2011;49:4–16.

    Article 
    CAS 

    Google Scholar
     

  • Meck JV, Waters WW, Ziegler MG, deBlock HF, Mills PJ, Robertson D, et al. Mechanisms of postspaceflight orthostatic hypotension: low alpha1-adrenergic receptor responses before flight and central autonomic dysregulation postflight. Am J Physiol Heart Circ Physiol. 2004;4:H1486–95.

    Article 

    Google Scholar
     

  • Felten DL, Jozefowicz R. Netter’s Atlas of Human Neuroscience. 1st ed: Icon Learning Systems; 2003.

  • Calaresu F, Yardley C. Medullary Basal Sympathetic Tone. Annu Rev Physiol. 1988;50:511–24.

    Article 
    CAS 

    Google Scholar
     

  • Thomas G. Neural control of the circulation. Advances in physiology education. 2011;35.

  • Furness JB, Costa M. Types of nerves in the enteric nervous system. Neuroscience 1980;5:1–20.

    Article 
    CAS 

    Google Scholar
     

  • Krassioukov AV, Weaver LC. Episodic hypertension due to autonomic dysreflexia in acute and chronic spinal cord-injured rats. Am J Physiol. 1995;268:H2077–83.

    CAS 

    Google Scholar
     

  • Eldahan KC, Rabchevsky AG. Autonomic dysreflexia after spinal cord injury: Systemic pathophysiology and methods of management. Autonomic Neurosci.: Basic Clin. 2018;209:59–70.

    Article 

    Google Scholar
     

  • Holmes GM, Blanke EN. Gastrointestinal dysfunction after spinal cord injury. Exp Neurol. 2019;320:113009.

    Article 

    Google Scholar
     

  • Karlsson A. Autonomic dysreflexia. Spinal cord. 1999;37:383–91.

    Article 
    CAS 

    Google Scholar
     

  • Krassioukov AV, Bunge RP, Pucket WR, MA B. The changes in human spinal sympathetic preganglionic neurons after spinal cord injury. Spinal cord. 1999;37:6–13.

    Article 
    CAS 

    Google Scholar
     

  • Krassioukov AV, LC W. Morphological changes in sympathetic preganglionic neurons after spinal cord injury in rats. Neuroscience. 1996;70:211–25.

    Article 
    CAS 

    Google Scholar
     

  • Ravensbergen HJCR, Groot SD, Post MWM, Slootman HJ, Woude LHVVD, Claydon VE. Cardiovascular Function After Spinal Cord Injury: Prevalence and Progression of Dysfunction During Inpatient Rehabilitation and 5 Years Following Discharge. 101177/1545968313504542. 2013.

  • Collins HL, Rodenbaugh DW, DiCarlo SE. Spinal cord injury alters cardiac electrophysiology and increases the susceptibility to ventricular arrhythmias. Progress in brain research. 2006;152:275–88.

    Article 

    Google Scholar
     

  • Alexander MS, Marson L. The neurologic control of arousal and orgasm with specific attention to spinal cord lesions: Integrating preclinical and clinical sciences. Autonomic Neurosci.: Basic Clin. 2018;209:90–9.

    Article 

    Google Scholar
     

  • Rabchevsky. Autonomic Consequences of Spinal Cord Injury - Hou - - Major Reference Works - Wiley Online Library. 2021.

  • Gwak YS, Hulsebosch CE. Neuronal hyperexcitability: a substrate for central neuropathic pain after spinal cord injury. Curr Pain Headache Rep. 2011;15:215–22.

    Article 

    Google Scholar
     

  • Squair JW, Dhaliwal R, Cragg JJ, Charbonneau R, Grant C, Phillips AA. National Survey of Bladder and Gastrointestinal Dysfunction in People with Spinal Cord Injury. J Neurotrauma. 2019;36:2011–9.

    Article 

    Google Scholar
     

  • Sharif S, Jazaib, Ali MY. Outcome Prediction in Spinal Cord Injury: Myth or Reality. World Neurosurg. 2020;140:574–90.

    Article 

    Google Scholar
     

  • Waddimba AC, Jain NB, Stolzmann K, Gagnon DR, Burgess JF Jr., Kazis LE, et al. Predictors of cardiopulmonary hospitalization in chronic spinal cord injury. Arch Phys Med Rehabil. 2009;90:193–200.

    Article 

    Google Scholar
     

  • Winslow EB, Lesch M, Talano JV, Meyer PR Jr. Spinal cord injuries associated with cardiopulmonary complications. Spine (Philos Pa 1976). 1986;11:809–12.

    Article 
    CAS 

    Google Scholar
     

  • White AR, Holmes GM. Anatomical and Functional Changes to the Colonic Neuromuscular Compartment after Experimental Spinal Cord Injury. J Neurotrauma. 2018;35:1079–90.

    Article 

    Google Scholar
     

  • Frias B, Phillips AA, Squair JW, Lee AHX, Laher I, Krassioukov AV. Reduced colonic smooth muscle cholinergic responsiveness is associated with impaired bowel motility after chronic experimental high-level spinal cord injury. Auton Neurosci. 2019;216:33–8.

    Article 
    CAS 

    Google Scholar
     

  • den Braber-Ymker M, Lammens M, van Putten MJ, Nagtegaal ID. The enteric nervous system and the musculature of the colon are altered in patients with spina bifida and spinal cord injury. Virchows Arch. 2017;470:175–84.

    Article 

    Google Scholar
     

  • Brading AF, Ramalingam T. Mechanisms controlling normal defecation and the potential effects of spinal cord injury. Prog Brain Res. 2006;152:345–58.

    Article 
    CAS 

    Google Scholar
     

  • Holmes GM. Upper gastrointestinal dysmotility after spinal cord injury: is diminished vagal sensory processing one culprit? Front Physiol. 2012;3:277.

    Article 

    Google Scholar
     

  • Anderson KD. Targeting Recovery: Priorities of the Spinal Cord-Injured Population. J Neurotrauma. 2004;21:1371–83.

    Article 

    Google Scholar
     

  • Popa C, Popa F, Grigorean VT, Onose G, Sandu AM, Popescu M. Vascular dysfunctions following spinal cord injury. J Med Life. 2010;3:275–85.


    Google Scholar
     

  • The Consensus Committee of the American Autonomic Society and the American Academy of Neurology Consensus statement on the definition of orthostatic hypotension, pure autonomic failure, and multiple system atrophy. Neurology. 1996;46:1470.

  • Krassioukov A, Eng JJ, Warburton DE. RT A systematic review of the management of orthostatic hypotension after spinal cord injury. Arch Phys Med Rehab. 2009;90:876–85.

    Article 

    Google Scholar
     

  • Hainsworth R. Cardiovascular responses to upright tilting in healthy subjects - cs0740017.pdf. Clin Sci. 1988;74:17–22.

    Article 
    CAS 

    Google Scholar
     

  • Claydon VE, Steeves JD, Krassioukov A. Orthostatic hypotension following spinal cord injury: understanding clinical pathophysiology. Spinal Cord. 2006;44:341–51.

    Article 
    CAS 

    Google Scholar
     

  • Krassioukov A. Autonomic function following cervical spinal cord injury. Respir Physiol Neurobiol. 2009;169:157–64.

    Article 

    Google Scholar
     

  • Curt A, Nitsche B, Rodic B, Schurch B, Dietz V. Assessment of autonomic dysreflexia in patients with spinal cord injury. J Neurol, Neurosurg, Psychiatry. 1997;62:473–7.

    Article 
    CAS 

    Google Scholar
     

  • Krassioukov AV, Furlan JC, Fehlings MG. Autonomic dysreflexia in acute spinal cord injury: an under-recognized clinical entity. J Neurotrauma. 2003;20:707–16.

    Article 

    Google Scholar
     

  • Mathias CJ, Christensen NJ, Frankel HL, Spalding JM. Cardiovascular control in recently injured tetraplegics in spinal shock. Quart J Med. 1979;48:273–87.

    CAS 

    Google Scholar
     

  • Biering-Sørensen F, Biering-Sørensen T, Liu N, Malmqvist L, Wecht JM, Krassioukov A. Alterations in cardiac autonomic control in spinal cord injury. Autonomic Neurosci.: Basic & Clin. 2018;209:4–18.

    Article 

    Google Scholar
     

  • Luthe W, Schultz JH. Autogenic therapy. W. L, editor. New York: Grune & Stratton; 1969.


    Google Scholar
     

  • Frank DL, Khorshid L, Kiffer JF, Moravec CS, McKee MG. Biofeedback in medicine:who, when, why and how?. Mental health in family medicine. 2010;7:85–91.


    Google Scholar
     

  • Cowings PS, Toscano WB. Autogenic-feedback training exercise is superior to promethazine for control of motion sickness symptoms. J Clin Pharm. 2000;40:1154–65.

    Article 
    CAS 

    Google Scholar
     

  • Lackner JR, Dizio P. Space motion sickness. Exp Brain Res. 2006;175:377–99.

    Article 

    Google Scholar
     

  • Muth ER. Motion and space sickness: intestinal and autonomic correlates. Auton Neurosci. 2006;129:58–66.

    Article 

    Google Scholar
     

  • LaCount LT, Barbieri R, Park K, Kim J, Brown EN, Kuo B, et al. Static and dynamic autonomic response with increasing nausea perception. Aviat Space Environ Med. 2011;82:424–33.


    Google Scholar
     

  • Cowings PS, Toscano WB, Miller NE, Pickering TG, Shapiro D, Stevenson J, et al. Autogenic-feedback training: a potential treatment for orthostatic intolerance in aerospace crews. J Clin Pharm. 1994;34:599–608.

    Article 
    CAS 

    Google Scholar
     

  • Rashed H, Cowings P, Toscano W, Adel D, El-Gammal A, Cutts T, et al. NASA biofeedback training exercise as an alternative method in treating patients with chronic GI symptoms. Am J Gastroenterol. 2000;95:2470.

    Article 

    Google Scholar
     

  • Rashed H, Cutts T, Abell T, Cowings P, Toscano W, El-Gammal A, et al. Predictors of response to a behavioral treatment in patients with chronic gastric motility disorders. Dig Dis Sci. 2002;47:1020–6.

    Article 

    Google Scholar
     

  • Shine A, Mathur P, Ahmed S, Ramos S, McElmurray L, Stocker A, et al. Low-Resolution Electrogastrogram at Baseline and Response to Temporary Gastric Electrical Stimulation-A Comparison of Cutaneous With Mucosal Recordings. Neuromodulation. 2022;25:1150–1159.

    Article 

    Google Scholar
     

  • Stancák A Jr., Kuna M, Srinivasan, Vishnudevananda S, Dostálek C. Kapalabhati–yogic cleansing exercise. I. Cardiovascular and respiratory changes. Homeost Health Dis. 1991;33:126–34.


    Google Scholar
     

  • Brucker BS, Ince LP. Biofeedback as an experimental treatment for postural hypotension in a patient with a spinal cord lesion. Arch Phys Med Rehab. 1977;58:49–53.

    CAS 

    Google Scholar
     

  • Ince LP. Biofeedback as a Treatment for Postural Hypotension. Psychosom Med. 1985;47:182–8.

    Article 
    CAS 

    Google Scholar
     

  • Stancák A Jr., Kuna M, Srinivasan, Vishnudevananda S, Dostálek C. Kapalabhati–yogic cleansing exercise. I. Cardiovascular and respiratory changes. Homeost Health Dis: Int J devoted Integr brain Funct Homeost Syst. 1991;33:126–34.


    Google Scholar
     

  • van Hedel HJA, Wirth B, Dietz V. Limits of locomotor ability in subjects with a spinal cord injury. Spinal Cord. 2005;43:593–603.

    Article 

    Google Scholar
     

  • Phillips AA, Krassioukov AV, Ainslie PN, Cote AT, DE W. Increased central arterial stiffness explains baroreflex dysfunction in spinal cord injury. J Neurotrauma. 2014;31:1122–8.

    Article 

    Google Scholar
     

  • JC D, JA N. Photo-electric plethysmography as a monitoring device in anaesthesia. Application and interpretation. Br J Anaesthesia. 1985;57:524–30.

  • Mathias CJ, Christensen NJ, Corbett JL, Frankel HL, Goodwin TJ, Peart WS. Plasma catecholamines, plasma renin activity and plasma aldosterone in tetraplegic man, horizontal and tilted. Clin Sci Mol Med. 1975;49:291–9.

    CAS 

    Google Scholar
     

  • Source link