• Ashtiani, R. E., Tehrani, S., Revilla-León, M. & Zandinejad, A. Reducing the risk of COVID-19 transmission in dental offices: A review. J. Prosthodont. 29, 739–745. doi.org/10.1111/jopr.13261 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Roychoudhury, S. et al. Viral pandemics of the last four decades: Pathophysiology, health impacts and perspectives. Int. J. Environ. Res. Public Health 17, 9411. doi.org/10.3390/ijerph17249411 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jayaweera, M., Perera, H., Gunawardana, B. & Manatunge, J. Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environ. Res. 188, 109819. doi.org/10.1016/j.envres.2020.109819 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jimenez, J. L. et al. What were the historical reasons for the resistance to recognizing airborne transmission during the COVID-19 pandemic?. Indoor Air 32, e13070 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fennelly, K. P. Particle sizes of infectious aerosols: Implications for infection control. Lancet Respir. Med. 8, 914–924. doi.org/10.1016/S2213-2600(20)30323-4 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, J. W. et al. Dismantling myths on the airborne transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J. Hosp. Infect. 110, 89–96. doi.org/10.1016/j.jhin.2020.12.022 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morawska, L. et al. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. J. Aerosol Sci. 40, 256–269. doi.org/10.1016/j.jaerosci.2008.11.002 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bourouiba, L., Dehandschoewercker, E. & Bush, J. W. M. Violent expiratory events: On coughing and sneezing. J. Fluid Mech. 745, 537–563. doi.org/10.1017/jfm.2014.88 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Atkinson, J. C. Y., Pessoa-Silva, C. L., Jensen, P., Li, Y. & Seto, W. H. In Natural Ventilation for Infection Control in Health-Care Settings (eds Atkinson, J. et al.) (World Health Organization, 2009).


    Google Scholar
     

  • Gralton, J., Tovey, E., McLaws, M.-L. & Rawlinson, W. D. The role of particle size in aerosolised pathogen transmission: A review. J. Infect. 62, 1–13. doi.org/10.1016/j.jinf.2010.11.010 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Sills, J. et al. Airborne transmission of SARS-CoV-2. Science 370, 303–304. doi.org/10.1126/science.abf0521 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Randall, K., Ewing, E. T., Marr, L. C., Jimenez, J. L. & Bourouiba, L. How did we get here: What are droplets and aerosols and how far do they go? A historical perspective on the transmission of respiratory infectious diseases. Interface Focus 11, 20210049. doi.org/10.1098/rsfs.2021.0049 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Virdi, M. K., Durman, K. & Deacon, S. The debate: What are aerosol-generating procedures in dentistry? A rapid review. JDR Clin. Trans. Res. 6, 115–127. doi.org/10.1177/2380084421989946 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harrel, S. K. & Molinari, J. Aerosols and splatter in dentistry: A brief review of the literature and infection control implications. J. Am. Dent. Assoc. 135, 429–437. doi.org/10.14219/jada.archive.2004.0207 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polednik, B. Exposure of staff to aerosols and bioaerosols in a dental office. Build. Environ. 187, 107388. doi.org/10.1016/j.buildenv.2020.107388 (2021).

    Article 

    Google Scholar
     

  • Sotiriou, M. et al. Measurement of particle concentrations in a dental office. Environ. Monit. Assess. 137, 351–361. doi.org/10.1007/s10661-007-9770-7 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lang, A., Ovsenik, M., Verdenik, I., Remškar, M. & Oblak, Č. Nanoparticle concentrations and composition in a dental office and dental laboratory: A pilot study on the influence of working procedures. J. Occup. Environ. Hyg. 15, 441–447. doi.org/10.1080/15459624.2018.1432864 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toroğlu, M. S., Haytaç, M. C. & Köksal, F. Evaluation of aerosol contamination during debonding procedures. Angle Orthod. 71, 299–306. doi.org/10.1043/0003-3219(2001)071%3c0299:Eoacdd%3e2.0.Co;2 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Greco, P. M. & Lai, C.-H. A new method of assessing aerosolized bacteria generated during orthodontic debonding procedures. Am. J. Orthod. Dentofac. Orthop. 133, S79–S87 (2008).

    Article 

    Google Scholar
     

  • Dawson, M. et al. Microbiological assessment of aerosol generated during debond of fixed orthodontic appliances. Am. J. Orthod. Dentofac. Orthop. 150, 831–838 (2016).

    Article 

    Google Scholar
     

  • Llandro, H. et al. Evaluating splatter and settled aerosol during orthodontic debonding: Implications for the COVID-19 pandemic. Br. Dent. J. doi.org/10.1038/s41415-020-2503-9 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rafiee, A. et al. Particle size, mass concentration, and microbiota in dental aerosols. J. Dent. Res. 101, 785–792 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eliades, T. & Koletsi, D. Minimizing the aerosol-generating procedures in orthodontics in the era of a pandemic: Current evidence on the reduction of hazardous effects for the treatment team and patients. Am. J. Orthod. Dentofac. Orthop. 158, 330–342. doi.org/10.1016/j.ajodo.2020.06.002 (2020).

    Article 

    Google Scholar
     

  • Day, C. J., Price, R., Sandy, J. R. & Ireland, A. J. Inhalation of aerosols produced during the removal of fixed orthodontic appliances: A comparison of 4 enamel cleanup methods. Am. J. Orthod. Dentofac. Orthop. 133, 11–17. doi.org/10.1016/j.ajodo.2006.01.049 (2008).

    Article 

    Google Scholar
     

  • Ireland, A. J., Moreno, T. & Price, R. Airborne particles produced during enamel cleanup after removal of orthodontic appliances. Am. J. Orthod. Dentofac. Orthop. 124, 683–686. doi.org/10.1016/s0889-5406(03)00623-1 (2003).

    Article 

    Google Scholar
     

  • Kumar, M. et al. The first proof of the capability of wastewater surveillance for COVID-19 in India through the detection of the genetic material of SARS-CoV-2. medRxiv doi.org/10.1101/2020.06.16.20133215 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuzmanovic, D. A., Elashvili, I., Wick, C., O’Connell, C. & Krueger, S. Bacteriophage MS2: Molecular weight and spatial distribution of the protein and RNA components by small-angle neutron scattering and virus counting. Structure 11, 1339–1348. doi.org/10.1016/j.str.2003.09.021 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Comparing the performance of 3 bioaerosol samplers for influenza virus. J. Aerosol Sci. 115, 133–145. doi.org/10.1016/j.jaerosci.2017.08.007 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cormier, J. & Janes, M. A double layer plaque assay using spread plate technique for enumeration of bacteriophage MS2. J. Virol. Methods 196, 86–92. doi.org/10.1016/j.jviromet.2013.10.034 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fidler, A., Steyer, A., Manevski, D. & Gašperšič, R. Virus transmission by ultrasonic scaler and its prevention by antiviral agent: An in vitro study. J. Periodontol. 93, e116–e124. doi.org/10.1002/JPER.21-0335 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ionescu, A. C. et al. Aerosols modification with H2O2 reduces airborne contamination by dental handpieces. J. Oral Microbiol. 13, 1881361. doi.org/10.1080/20002297.2021.1881361 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tung-Thompson, G., Libera, D. A., Koch, K. L., de los Reyes, F. L. III. & Jaykus, L.-A. Aerosolization of a human norovirus surrogate, bacteriophage MS2, during simulated vomiting. PLoS ONE 10, e0134277. doi.org/10.1371/journal.pone.0134277 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coulliette, A. D. et al. MS2 coliphage as a surrogate for 2009 pandemic influenza A (H1N1) virus (pH1N1) in surface survival studies on N95 filtering facepiece respirators. J. Int. Soc. Respir. Prot. 21, 14–22 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allison, J. R. et al. Waterline disinfectants reduce dental bioaerosols: A multitracer validation. J. Dent. Res. 101, 1198–1204. doi.org/10.1177/00220345221093522 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vernon, J. J. et al. Dental mitigation strategies to reduce aerosolization of SARS-CoV-2. J. Dent. Res. 100, 1461–1467. doi.org/10.1177/00220345211032885 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boles, C., Brown, G. & Nonnenmann, M. Determination of murine norovirus aerosol concentration during toilet flushing. Sci. Rep. 11, 23558. doi.org/10.1038/s41598-021-02938-0 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farnsworth, J. E. et al. Development of a method for bacteria and virus recovery from heating, ventilation, and air conditioning (HVAC) filters. J. Environ. Monit. 8, 1006. doi.org/10.1039/b606132j (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hermann, J. R. et al. Optimization of a sampling system for recovery and detection of airborne porcine reproductive and respiratory syndrome virus and swine influenza virus. Appl. Environ. Microbiol. 72, 4811–4818. doi.org/10.1128/aem.00472-06 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindsley, W. G. et al. Measurements of airborne influenza virus in aerosol particles from human coughs. PLoS ONE 5, e15100. doi.org/10.1371/journal.pone.0015100 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brooks, J. P. et al. A national study on the residential impact of biological aerosols from the land application of biosolids. J. Appl. Microbiol. 99, 310–322. doi.org/10.1111/j.1365-2672.2005.02604.x (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hogan, C. J. et al. Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles. J. Appl. Microbiol. 99, 1422–1434. doi.org/10.1111/j.1365-2672.2005.02720.x (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, M. et al. Detection of viable murine norovirus using the plaque assay and propidium–monoazide-combined real-time reverse transcription-polymerase chain reaction. J. Virol. Methods 221, 57–61. doi.org/10.1016/j.jviromet.2015.04.018 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lindsley, W. G., Blachere, F. M., Law, B. F., Beezhold, D. H. & Noti, J. D. Efficacy of face masks, neck gaiters and face shields for reducing the expulsion of simulated cough-generated aerosols. Aerosol Sci. Technol. 55, 449–457. doi.org/10.1080/02786826.2020.1862409 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Remington, W. D., Ott, B. C. & Hartka, T. R. Effectiveness of barrier devices, high-volume evacuators, and extraoral suction devices on reducing dental aerosols for the dental operator. J. Am. Dent. Assoc. doi.org/10.1016/j.adaj.2021.08.011 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Killingley, B. et al. Safety, tolerability and viral kinetics during SARS-CoV-2 human challenge in young adults. Nat. Med. 28, 1031–1041. doi.org/10.1038/s41591-022-01780-9 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Watanabe, T., Bartrand, T. A., Weir, M. H., Omura, T. & Haas, C. N. Development of a dose–response model for SARS coronavirus. Risk Anal. 30, 1129–1138. doi.org/10.1111/j.1539-6924.2010.01427.x (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karimzadeh, S., Bhopal, R. & Nguyen Tien, H. Review of infective dose, routes of transmission and outcome of COVID-19 caused by the SARS-COV-2: Comparison with other respiratory viruses. Epidemiol. Infect. 149, 1–22. doi.org/10.1017/s0950268821000790 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Basu, S. Exposure to a COVID-19 Carrier: Transmission Trends in Respiratory Tract and Estimation of Infectious Dose (Cold Spring Harbor Laboratory, 2020).


    Google Scholar
     

  • Vernon, J. J. et al. Increased handpiece speeds without air coolant: Aerosols and thermal impact. J. Dent. Res. 102, 53–60. doi.org/10.1177/00220345221123253 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arellano-Cotrina, J. J., Marengo-Coronel, N., Atoche-Socola, K. J., Peña-Soto, C. & Arriola-Guillén, L. E. Effectiveness and recommendations for the use of dental masks in the prevention of COVID-19: A literature review. Disaster Med. Public Health Prep. 15, e43–e48. doi.org/10.1017/dmp.2020.255 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Source link