[ad_1]

  • 1.
    • Andersen KG
    • Rambaut A
    • Lipkin WI
    • Holmes EC
    • Garry RF

    The proximal origin of SARS-CoV-2.

    Nat Med. 2020; 26: 450-452

  • 2.

    COVID-19 coronavirus pandemic.

  • 3.
    • Johns Hopkins University of Medicine

    COVID-19 dashboard by the Center for Systems Science and Engineering (CSS) at Johns Hopkins University (JHU).

  • 4.
    • Carfì A
    • Bernabei R
    • Landi F
    • Gemelli Against COVID-19 Post-Acute Care Study Group

    Persistent symptoms in patients after acute COVID-19.

    JAMA. 2020; 324: 603-605

  • 5.
    • Helms J
    • Kremer S
    • Merdji H
    • et al.

    Neurologic features in severe SARS-CoV-2 infection.

    N Engl J Med. 2020; 382: 2268-2270

  • 6.

    Long term respiratory complications of covid-19.

    BMJ. 2020; 370m3001

  • 7.
    • The Editors of the Lancet Group

    Learning from a retraction.

    Lancet. 2020; 3961056

  • 8.
    • Rochwerg B
    • Parke R
    • Murthy S
    • et al.

    Misinformation during the coronavirus disease 2019 outbreak: how knowledge emerges from noise.

    Crit Care Explor. 2020; 2e0098

  • 9.

    The Conversation: Coronavirus research done too fast is testing publishing safeguards, bad science is getting through.

  • 10.

    Scientists cut peer-review corners under pressure of COVID-19 pandemic.

  • 11.
    • Osuchowski MF
    • Aletti F
    • Cavaillon JM
    • et al.

    SARS-CoV-2/COVID-19: evolving reality, global response, knowledge gaps, and opportunities.

    Shock. 2020; 54: 416-437

  • 12.
    • Centers for Disease Control and Prevention

    Frequently asked questions about SARS.

  • 13.

    Middle East respiratory syndrome coronavirus (MERS-CoV) – The Kingdom of Saudi Arabia.

  • 14.
    • Thoms M
    • Buschauer R
    • Ameismeier M
    • et al.

    Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2.

    Science. 2020; 369: 1249-1255

  • 15.

    Evasion of type I interferon by SARS-CoV-2.

    Cell Rep. 2020; 33108234

  • 16.

    Mechanisms of SARS-CoV-2 transmission and pathogenesis.

    Trends Immunol. 2020; 41: 1100-1115

  • 17.

    Detection of SARS-CoV-2 in different types of clinical specimens.

    JAMA. 2020; 323: 1843-1844

  • 18.
    • Xiao F
    • Tang M
    • Zheng X
    • Liu Y
    • Li X
    • Shan H

    Evidence for gastrointestinal infection of SARS-CoV-2.

    Gastroenterology. 2020; 158: 1831-1833.e3

  • 19.
    • Stanifer ML
    • Kee C
    • Cortese M
    • et al.

    Critical role of type III interferon in controlling SARS-CoV-2 infection in human intestinal epithelial cells.

    Cell Rep. 2020; 32107863

  • 20.
    • Chu H
    • Zhou J
    • Wong BH
    • et al.

    Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response.

    Virology. 2014; 454–455: 197-205

  • 21.
    • Cheung CY
    • Poon LL
    • Ng IH
    • et al.

    Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis.

    J Virol. 2005; 79: 7819-7826

  • 22.

    Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis.

    J Infect Dis. 2014; 209: 1331-1342

  • 23.
    • Chen Y
    • Feng Z
    • Diao B
    • et al.

    The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly decimates human spleens and lymph nodes.

    medRxiv. 2020; ()

  • 24.
    • Wang C
    • Xie J
    • Zhao L
    • et al.

    Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients.

    EBioMedicine. 2020; 57102833

  • 25.
    • Wölfel R
    • Corman VM
    • Guggemos W
    • et al.

    Virological assessment of hospitalized patients with COVID-2019.

    Nature. 2020; 581: 465-469

  • 26.
    • Rockx B
    • Kuiken T
    • Herfst S
    • et al.

    Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model.

    Science. 2020; 368: 1012-1015

  • 27.
    • Peiris JSM
    • Chu CM
    • Cheng VCC
    • et al.

    Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study.

    Lancet. 2003; 361: 1767-1772

  • 28.
    • Pan Y
    • Zhang D
    • Yang P
    • Poon LLM
    • Wang Q

    Viral load of SARS-CoV-2 in clinical samples.

    Lancet Infect Dis. 2020; 20: 411-412

  • 29.

    Temporal dynamics in viral shedding and transmissibility of COVID-19.

    Nat Med. 2020; 26: 672-675

  • 30.
    • Corman VM
    • Albarrak AM
    • Omrani AS
    • et al.

    Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection.

    Clin Infect Dis. 2016; 62: 477-483

  • 31.
    • Yilmaz A
    • Marklund E
    • Andersson M
    • et al.

    Upper respiratory tract levels of SARS-CoV-2 RNA and duration of viral RNA shedding do not differ between patients with mild and severe/critical COVID-19.

    J Infect Dis. 2021; 223: 15-18

  • 32.
    • Chandrashekar A
    • Liu J
    • Martinot AJ
    • et al.

    SARS-CoV-2 infection protects against rechallenge in rhesus macaques.

    Science. 2020; 369: 812-817

  • 33.
    • Ni L
    • Ye F
    • Cheng M-L
    • et al.

    Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals.

    Immunity. 2020; 52: 971-977.e3

  • 34.
    • Weis S
    • Scherag A
    • Baier M
    • et al.

    Antibody response using six different serological assays in a completely PCR-tested community after a COVID-19 outbreak—the CoNAN study.

    Clin Microbiol Infect. 2021; 27: 470.e1-470.e9

  • 35.
    • Sekine T
    • Perez-Potti A
    • Rivera-Ballesteros O
    • et al.

    Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19.

    Cell. 2020; 183: 158-168.e14

  • 36.
    • Ibarrondo FJ
    • Fulcher JA
    • Goodman-Meza D
    • et al.

    Rapid decay of anti-SARS-CoV-2 antibodies in persons with mild Covid-19.

    N Engl J Med. 2020; 383: 1085-1087

  • 37.
    • Cao W-C
    • Liu W
    • Zhang P-H
    • Zhang F
    • Richardus JH

    Disappearance of antibodies to SARS-associated coronavirus after recovery.

    N Engl J Med. 2007; 357: 1162-1163

  • 38.
    • Tang F
    • Quan Y
    • Xin ZT
    • et al.

    Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study.

    J Immunol. 2011; 186: 7264-7268

  • 39.
    • Wu LP
    • Wang NC
    • Chang YH
    • et al.

    Duration of antibody responses after severe acute respiratory syndrome.

    Emerg Infect Dis. 2007; 13: 1562-1564

  • 40.
    • Guo X
    • Guo Z
    • Duan C
    • et al.

    Long-term persistence of IgG antibodies in SARS-CoV infected healthcare workers.

    medRxiv. 2020; ()

  • 41.
    • Dan JM
    • Mateus J
    • Kato Y
    • et al.

    Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection.

    Science. 2021; 371eabf4063

  • 42.
    • Le Bert N
    • Tan AT
    • Kunasegaran K
    • et al.

    SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls.

    Nature. 2020; 584: 457-462

  • 43.

    SARS-CoV-2 T cell immunity: specificity, function, durability, and role in protection.

    Sci Immunol. 2020; 5eabd6160

  • 44.
    • Mateus J
    • Grifoni A
    • Tarke A
    • et al.

    Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans.

    Science. 2020; 370: 89-94

  • 45.

    Antibodies induced by receptor-binding domain in spike protein of SARS-CoV do not cross-neutralize the novel human coronavirus hCoV-EMC.

    J Infect. 2013; 67: 348-350

  • 46.
    • Che XY
    • Qiu LW
    • Liao ZY
    • et al.

    Antigenic cross-reactivity between severe acute respiratory syndrome-associated coronavirus and human coronaviruses 229E and OC43.

    J Infect Dis. 2005; 191: 2033-2037

  • 47.
    • Chan KH
    • Cheng VC
    • Woo PC
    • et al.

    Serological responses in patients with severe acute respiratory syndrome coronavirus infection and cross-reactivity with human coronaviruses 229E, OC43, and NL63.

    Clin Diagn Lab Immunol. 2005; 12: 1317-1321

  • 48.
    • Lv H
    • Wu NC
    • Tsang OT-Y
    • et al.

    Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections.

    Cell Rep. 2020; 31107725

  • 49.
    • Premkumar L
    • Segovia-Chumbez B
    • Jadi R
    • et al.

    The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients.

    Sci Immunol. 2020; 5eabc8413

  • 50.

    vWei P-F, ed. Diagnosis and treatment protocol for novel coronavirus pneumonia (trial version 7). Chin Med J (Engl) 2020; 133: 1087–95.

  • 51.
    • Epidemiology Working Group for NCIP Epidemic Response
    • Chinese Center for Disease Control and Prevention

    The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China.

    Zhonghua Liu Xing Bing Xue Za Zhi. 2020; 41: 145-151

  • 52.
    • Hou YJ
    • Okuda K
    • Edwards CE
    • et al.

    SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract.

    Cell. 2020; 182: 429-446.e14

  • 53.
    • Tang X
    • Du RH
    • Wang R
    • et al.

    Comparison of hospitalized patients with ARDS caused by COVID-19 and H1N1.

    Chest. 2020; 158: 195-205

  • 54.
    • Ellinghaus D
    • Degenhardt F
    • Bujanda L
    • et al.

    Genomewide association study of severe Covid-19 with respiratory failure.

    N Engl J Med. 2020; 383: 1522-1534

  • 55.
    • Siswanto GM
    • Gani M
    • Fauzi AR
    • et al.

    Possible silent hypoxemia in a COVID-19 patient: a case report.

    Ann Med Surg (Lond). 2020; 60: 583-586

  • 56.
    • Dhont S
    • Derom E
    • Van Braeckel E
    • Depuydt P
    • Lambrecht BN

    The pathophysiology of ‘happy’ hypoxemia in COVID-19.

    Respir Res. 2020; 21: 198

  • 57.
    • Guan WJ
    • Ni ZY
    • Hu Y
    • et al.

    Clinical characteristics of coronavirus disease 2019 in China.

    N Engl J Med. 2020; 382: 1708-1720

  • 58.
    • Manning HL
    • Schwartzstein RM

    Pathophysiology of dyspnea.

    N Engl J Med. 1995; 333: 1547-1553

  • 59.

    Measuring the ventilatory response to hypoxia.

    J Physiol. 2007; 584: 285-293

  • 60.
    • Brochard L
    • Slutsky A
    • Pesenti A

    Mechanical ventilation to minimize progression of lung injury in acute respiratory failure.

    Am J Respir Crit Care Med. 2017; 195: 438-442

  • 61.
    • Tobin MJ
    • Laghi F
    • Jubran A

    Why COVID-19 silent hypoxemia is baffling to physicians.

    Am J Respir Crit Care Med. 2020; 202: 356-360

  • 62.

    Abnormal pulmonary function in COVID-19 patients at time of hospital discharge.

    Eur Respir J. 2020; 552001217

  • 63.
    • Lang M
    • Som A
    • Mendoza DP
    • et al.

    Hypoxaemia related to COVID-19: vascular and perfusion abnormalities on dual-energy CT.

    Lancet Infect Dis. 2020; 20: 1365-1366

  • 64.
    • Westblade LF
    • Brar G
    • Pinheiro LC
    • et al.

    SARS-CoV-2 viral load predicts mortality in patients with and without cancer who are hospitalized with COVID-19.

    Cancer Cell. 2020; 38: 661-671.e2

  • 65.
    • Magleby R
    • Westblade LF
    • Trzebucki A
    • et al.

    Impact of SARS-CoV-2 viral load on risk of intubation and mortality among hospitalized patients with coronavirus disease 2019.

    Clin Infect Dis. 2020; ()

  • 66.
    • Hikmet F
    • Méar L
    • Edvinsson Å
    • Micke P
    • Uhlén M
    • Lindskog C

    The protein expression profile of ACE2 in human tissues.

    Mol Syst Biol. 2020; 16e9610

  • 67.
    • Hoffmann M
    • Kleine-Weber H
    • Schroeder S
    • et al.

    SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.

    Cell. 2020; 181: 271-280.e8

  • 68.
    • Dickson RP
    • Erb-Downward JR
    • Martinez FJ
    • Huffnagle GB

    The microbiome and the respiratory tract.

    Annu Rev Physiol. 2016; 78: 481-504

  • 69.

    Airborne transmission of SARS-CoV-2: the world should face the reality.

    Environ Int. 2020; 139105730

  • 70.
    • Wilson NM
    • Norton A
    • Young FP
    • Collins DW

    Airborne transmission of severe acute respiratory syndrome coronavirus-2 to healthcare workers: a narrative review.

    Anaesthesia. 2020; 75: 1086-1095

  • 71.
    • Cantuti-Castelvetri L
    • Ojha R
    • Pedro LD
    • et al.

    Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity.

    Science. 2020; 370: 856-860

  • 72.
    • Wang S
    • Qiu Z
    • Hou Y
    • et al.

    AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells.

    Cell Res. 2021; 31: 126-140

  • 73.
    • Carsana L
    • Sonzogni A
    • Nasr A
    • et al.

    Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study.

    Lancet Infect Dis. 2020; 20: 1135-1140

  • 74.
    • Hellman U
    • Karlsson MG
    • Engström-Laurent A
    • et al.

    Presence of hyaluronan in lung alveoli in severe Covid-19: an opening for new treatment options?.

    J Biol Chem. 2020; 295: 15418-15422

  • 75.
    • Yao XH
    • He ZC
    • Li TY
    • et al.

    Pathological evidence for residual SARS-CoV-2 in pulmonary tissues of a ready-for-discharge patient.

    Cell Res. 2020; 30: 541-543

  • 76.
    • Ackermann M
    • Verleden SE
    • Kuehnel M
    • et al.

    Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19.

    N Engl J Med. 2020; 383: 120-128

  • 77.
    • Prilutskiy A
    • Kritselis M
    • Shevtsov A
    • et al.

    SARS-CoV-2 infection-associated hemophagocytic lymphohistiocytosis.

    Am J Clin Pathol. 2020; 154: 466-474

  • 78.
    • Nicholls JM
    • Poon LL
    • Lee KC
    • et al.

    Lung pathology of fatal severe acute respiratory syndrome.

    Lancet. 2003; 361: 1773-1778

  • 79.
    • Sorbello M
    • El-Boghdadly K
    • Di Giacinto I
    • et al.

    The Italian coronavirus disease 2019 outbreak: recommendations from clinical practice.

    Anaesthesia. 2020; 75: 724-732

  • 80.
    • Gattinoni L
    • Chiumello D
    • Caironi P
    • et al.

    COVID-19 pneumonia: different respiratory treatments for different phenotypes?.

    Intensive Care Med. 2020; 46: 1099-1102

  • 81.
    • Tobin MJ
    • Laghi F
    • Jubran A

    Caution about early intubation and mechanical ventilation in COVID-19.

    Ann Intensive Care. 2020; 10: 78

  • 82.
    • Grasselli G
    • Tonetti T
    • Protti A
    • et al.

    Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study.

    Lancet Respir Med. 2020; 8: 1201-1208

  • 83.
    • Gattinoni L
    • Marini JJ
    • Camporota L

    The respiratory drive: an overlooked tile of COVID-19 pathophysiology.

    Am J Respir Crit Care Med. 2020; 202: 1079-1080

  • 84.

    Pulmonary fibrosis: pathogenesis, etiology and regulation.

    Mucosal Immunol. 2009; 2: 103-121

  • 85.
    • Quartuccio L
    • Semerano L
    • Benucci M
    • Boissier MC
    • De Vita S

    Urgent avenues in the treatment of COVID-19: targeting downstream inflammation to prevent catastrophic syndrome.

    Joint Bone Spine. 2020; 87: 191-193

  • 86.

    A potential treatment of COVID-19 with TGF-β blockade.

    Int J Biol Sci. 2020; 16: 1954-1955

  • 87.
    • Eapen MS
    • Lu W
    • Gaikwad AV
    • et al.

    Endothelial to mesenchymal transition: a precursor to post-COVID-19 interstitial pulmonary fibrosis and vascular obliteration?.

    Eur Respir J. 2020; 562003167

  • 88.

    Pathology and pathogenesis of severe acute respiratory syndrome.

    Am J Pathol. 2007; 170: 1136-1147

  • 89.
    • Hui DS
    • Joynt GM
    • Wong KT
    • et al.

    Impact of severe acute respiratory syndrome (SARS) on pulmonary function, functional capacity and quality of life in a cohort of survivors.

    Thorax. 2005; 60: 401-409

  • 90.
    • Herridge MS
    • Tansey CM
    • Matté A
    • et al.

    Functional disability 5 years after acute respiratory distress syndrome.

    N Engl J Med. 2011; 364: 1293-1304

  • 91.
    • Hwang DM
    • Chamberlain DW
    • Poutanen SM
    • Low DE
    • Asa SL
    • Butany J

    Pulmonary pathology of severe acute respiratory syndrome in Toronto.

    Mod Pathol. 2005; 18: 1-10

  • 92.
    • Guo Y
    • Korteweg C
    • McNutt MA
    • Gu J

    Pathogenetic mechanisms of severe acute respiratory syndrome.

    Virus Res. 2008; 133: 4-12

  • 93.
    • Edler C
    • Schröder AS
    • Aepfelbacher M
    • et al.

    Dying with SARS-CoV-2 infection-an autopsy study of the first consecutive 80 cases in Hamburg, Germany.

    Int J Legal Med. 2020; 134: 1275-1284

  • 94.
    • Barton LM
    • Duval EJ
    • Stroberg E
    • Ghosh S
    • Mukhopadhyay S

    COVID-19 autopsies, Oklahoma, USA.

    Am J Clin Pathol. 2020; 153: 725-733

  • 95.
    • Ojha V
    • Mani A
    • Pandey NN
    • Sharma S
    • Kumar S

    CT in coronavirus disease 2019 (COVID-19): a systematic review of chest CT findings in 4410 adult patients.

    Eur Radiol. 2020; 30: 6129-6138

  • 96.
    • Yu M
    • Liu Y
    • Xu D
    • Zhang R
    • Lan L
    • Xu H

    Prediction of the development of pulmonary fibrosis using serial thin-section CT and clinical features in patients discharged after treatment for COVID-19 pneumonia.

    Korean J Radiol. 2020; 21: 746-755

  • 97.
    • Klok FA
    • Kruip MJHA
    • van der Meer NJM
    • et al.

    Incidence of thrombotic complications in critically ill ICU patients with COVID-19.

    Thromb Res. 2020; 191: 145-147

  • 98.
    • Obi AT
    • Barnes GD
    • Napolitano LM
    • Henke PK
    • Wakefield TW

    Venous thrombosis epidemiology, pathophysiology, and anticoagulant therapies and trials in severe acute respiratory syndrome coronavirus 2 infection.

    J Vasc Surg Venous Lymphat Disord. 2021; 9: 23-35

  • 99.
    • Obi AT
    • Pannucci CJ
    • Nackashi A
    • et al.

    Validation of the Caprini venous thromboembolism risk assessment model in critically ill surgical patients.

    JAMA Surg. 2015; 150: 941-948

  • 100.
    • Burkhard-Koren NM
    • Haberecker M
    • Maccio U
    • et al.

    Higher prevalence of pulmonary macrothrombi in SARS-CoV-2 than in influenza A: autopsy results from ‘Spanish flu’ 1918/1919 in Switzerland to Coronavirus disease 2019.

    J Pathol Clin Res. 2021; 7: 135-143

  • 101.

    Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China.

    JAMA Intern Med. 2020; 180: 934-943

  • 102.

    Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study.

    Lancet. 2020; 395: 1054-1062

  • 103.
    • Chen T
    • Wu D
    • Chen H
    • et al.

    Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study.

    BMJ. 2020; 368m1091

  • 104.
    • Goyal P
    • Choi JJ
    • Pinheiro LC
    • et al.

    Clinical characteristics of Covid-19 in New York City.

    N Engl J Med. 2020; 382: 2372-2374

  • 105.
    • Thachil J
    • Tang N
    • Gando S
    • et al.

    ISTH interim guidance on recognition and management of coagulopathy in COVID-19.

    J Thromb Haemost. 2020; 18: 1023-1026

  • 106.
    • Leisman DE
    • Ronner L
    • Pinotti R
    • et al.

    Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes.

    Lancet Respir Med. 2020; 8: 1233-1244

  • 107.

    Laboratory abnormalities in patients with COVID-2019 infection.

    Clin Chem Lab Med. 2020; 58: 1131-1134

  • 108.
    • Jirak P
    • Larbig R
    • Shomanova Z
    • et al.

    Myocardial injury in severe COVID-19 is similar to pneumonias of other origin: results from a multicentre study.

    ESC Heart Fail. 2021; 8: 37-46

  • 109.
    • Mazzoni A
    • Salvati L
    • Maggi L
    • et al.

    Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent.

    J Clin Invest. 2020; 130: 4694-4703

  • 110.
    • Varga Z
    • Flammer AJ
    • Steiger P
    • et al.

    Endothelial cell infection and endotheliitis in COVID-19.

    Lancet. 2020; 395: 1417-1418

  • 111.
    • Bösmüller H
    • Traxler S
    • Bitzer M
    • et al.

    The evolution of pulmonary pathology in fatal COVID-19 disease: an autopsy study with clinical correlation.

    Virchows Arch. 2020; 477: 349-357

  • 112.
    • Schaefer IM
    • Padera RF
    • Solomon IH
    • et al.

    In situ detection of SARS-CoV-2 in lungs and airways of patients with COVID-19.

    Mod Pathol. 2020; 33: 2104-2114

  • 113.

    Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China.

    Kidney Int. 2020; 98: 219-227

  • 114.
    • Buja LM
    • Wolf DA
    • Zhao B
    • et al.

    The emerging spectrum of cardiopulmonary pathology of the coronavirus disease 2019 (COVID-19): report of 3 autopsies from Houston, Texas, and review of autopsy findings from other United States cities.

    Cardiovasc Pathol. 2020; 48107233

  • 115.
    • Sadegh Beigee F
    • Pourabdollah Toutkaboni M
    • Khalili N
    • et al.

    Diffuse alveolar damage and thrombotic microangiopathy are the main histopathological findings in lung tissue biopsy samples of COVID-19 patients.

    Pathol Res Pract. 2020; 216153228

  • 116.
    • Iba T
    • Levy JH
    • Connors JM
    • Warkentin TE
    • Thachil J
    • Levi M

    The unique characteristics of COVID-19 coagulopathy.

    Crit Care. 2020; 24: 360

  • 117.
    • Copin MC
    • Parmentier E
    • Duburcq T
    • Poissy J
    • Mathieu D

    Time to consider histologic pattern of lung injury to treat critically ill patients with COVID-19 infection.

    Intensive Care Med. 2020; 46: 1124-1126

  • 118.
    • McGonagle D
    • O'Donnell JS
    • Sharif K
    • Emery P
    • Bridgewood C

    Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia.

    Lancet Rheumatol. 2020; 2: e437-e445

  • 119.
    • Arachchillage DJ
    • Stacey A
    • Akor F
    • Scotz M
    • Laffan M

    Thrombolysis restores perfusion in COVID-19 hypoxia.

    Br J Haematol. 2020; 190: e270-e274

  • 120.
    • Zhang Y
    • Xiao M
    • Zhang S
    • et al.

    Coagulopathy and antiphospholipid antibodies in patients with Covid-19.

    N Engl J Med. 2020; 382: e38

  • 121.

    Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China.

    JAMA. 2020; 323: 1061-1069

  • 122.
    • Botta M
    • Tsonas AM
    • Pillay J
    • et al.

    Ventilation management and clinical outcomes in invasively ventilated patients with COVID-19 (PRoVENT-COVID): a national, multicentre, observational cohort study.

    Lancet Respir Med. 2021; 9: 139-148

  • 123.
    • Sinha P
    • Calfee CS
    • Cherian S
    • et al.

    Prevalence of phenotypes of acute respiratory distress syndrome in critically ill patients with COVID-19: a prospective observational study.

    Lancet Respir Med. 2020; 8: 1209-1218

  • 124.
    • Puelles VG
    • Lütgehetmann M
    • Lindenmeyer MT
    • et al.

    Multiorgan and renal tropism of SARS-CoV-2.

    N Engl J Med. 2020; 383: 590-592

  • 125.
    • Wichmann D
    • Sperhake JP
    • Lütgehetmann M
    • et al.

    Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study.

    Ann Intern Med. 2020; 173: 268-277

  • 126.
    • Gill SE
    • Dos Santos CC
    • O'Gorman DB
    • et al.

    Transcriptional profiling of leukocytes in critically ill COVID19 patients: implications for interferon response and coagulation.

    Intensive Care Med Exp. 2020; 8: 75

  • 127.
    • Deinhardt-Emmer S
    • Wittschieber D
    • Sanft J
    • et al.

    Early postmortem mapping of SARS-CoV-2 RNA in patients with COVID-19 and the correlation with tissue damage.

    Elife. 2021; 10e60361

  • 128.
    • South AM
    • Diz DI
    • Chappell MC

    COVID-19, ACE2, and the cardiovascular consequences.

    Am J Physiol Heart Circ Physiol. 2020; 318: H1084-H1090

  • 129.

    Mechanisms and treatment of organ failure in sepsis.

    Nat Rev Nephrol. 2018; 14: 417-427

  • 130.
    • Gupta A
    • Madhavan MV
    • Sehgal K
    • et al.

    Extrapulmonary manifestations of COVID-19.

    Nat Med. 2020; 26: 1017-1032

  • 131.
    • Onofrio L
    • Caraglia M
    • Facchini G
    • Margherita V
    • Placido S
    • Buonerba C

    Toll-like receptors and COVID-19: a two-faced story with an exciting ending.

    Future Sci OA. 2020; 6FSO605

  • 132.
    • Totura AL
    • Whitmore A
    • Agnihothram S
    • et al.

    Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection.

    MBio. 2015; 6: e00638-e00715

  • 133.
    • van der Made CI
    • Simons A
    • Schuurs-Hoeijmakers J
    • et al.

    Presence of genetic variants among young men with severe COVID-19.

    JAMA. 2020; 324: 663-673

  • 134.
    • Zhang Q
    • Bastard P
    • Liu Z
    • et al.

    Inborn errors of type I IFN immunity in patients with life-threatening COVID-19.

    Science. 2020; 370eabd4570

  • 135.

    Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages.

    Nat Rev Immunol. 2020; 20: 355-362

  • 136.
    • Huang C
    • Wang Y
    • Li X
    • et al.

    Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.

    Lancet. 2020; 395: 497-506

  • 137.
    • Bermejo-Martin JF
    • González-Rivera M
    • Almansa R
    • et al.

    Viral RNA load in plasma is associated with critical illness and a dysregulated host response in COVID-19.

    Crit Care. 2020; 24: 691

  • 138.
    • Sinha P
    • Matthay MA
    • Calfee CS

    Is a “cytokine storm” relevant to COVID-19?.

    JAMA Intern Med. 2020; 180: 1152-1154

  • 139.
    • Chen X
    • Zhao B
    • Qu Y
    • et al.

    Detectable serum severe acute respiratory syndrome coronavirus 2 viral load (RNAemia) is closely correlated with drastically elevated interleukin 6 level in critically ill patients with coronavirus disease 2019.

    Clin Infect Dis. 2020; 71: 1937-1942

  • 140.

    Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing.

    Cell Discov. 2020; 6: 31

  • 141.

    Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19.

    J Med Virol. 2020; 92: 791-796

  • 142.
    • Ruan Q
    • Yang K
    • Wang W
    • Jiang L
    • Song J

    Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China.

    Intensive Care Med. 2020; 46: 846-848

  • 143.
    • Balnis J
    • Adam AP
    • Chopra A
    • et al.

    Unique inflammatory profile is associated with higher SARS-CoV-2 acute respiratory distress syndrome (ARDS) mortality.

    Am J Physiol Regul Integr Comp Physiol. 2021; 320: R250-R257

  • 144.

    Clinical and immunologic features in severe and moderate coronavirus disease 2019.

    J Clin Invest. 2020; 130: 2620-2629

  • 145.

    Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing.

    Cell Discov. 2020; 6: 31

  • 146.
    • Payen D
    • Cravat M
    • Maadadi H
    • et al.

    A longitudinal study of immune cells in severe COVID-19 patients.

    Front Immunol. 2020; 11580250

  • 147.
    • Giamarellos-Bourboulis EJ
    • Netea MG
    • Rovina N
    • et al.

    Complex immune dysregulation in COVID-19 patients with severe respiratory failure.

    Cell Host Microbe. 2020; 27: 992-1000.e3

  • 148.
    • Carter MJ
    • Fish M
    • Jennings A
    • et al.

    Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection.

    Nat Med. 2020; 26: 1701-1707

  • 149.
    • Feldstein LR
    • Rose EB
    • Horwitz SM
    • et al.

    Multisystem inflammatory syndrome in U.S. children and adolescents.

    N Engl J Med. 2020; 383: 334-346

  • 150.
    • Dufort EM
    • Koumans EH
    • Chow EJ
    • et al.

    Multisystem inflammatory syndrome in children in New York State.

    N Engl J Med. 2020; 383: 347-358

  • 151.
    • Bastard P
    • Rosen LB
    • Zhang Q
    • et al.

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19.

    Science. 2020; 370eabd4585

  • 152.
    • Hadjadj J
    • Yatim N
    • Barnabei L
    • et al.

    Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients.

    Science. 2020; 369: 718-724

  • 153.
    • Blanco-Melo D
    • Nilsson-Payant BE
    • Liu WC
    • et al.

    Imbalanced host response to SARS-CoV-2 drives development of COVID-19.

    Cell. 2020; 181: 1036-1045.e9

  • 154.
    • Trouillet-Assant S
    • Viel S
    • Gaymard A
    • et al.

    Type I IFN immunoprofiling in COVID-19 patients.

    J Allergy Clin Immunol. 2020; 146: 206-208.e2

  • 155.
    • Galani IE
    • Rovina N
    • Lampropoulou V
    • et al.

    Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison.

    Nat Immunol. 2021; 22: 32-40

  • 156.
    • Lee JS
    • Park S
    • Jeong HW
    • et al.

    Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19.

    Sci Immunol. 2020; 5eabd1554

  • 157.
    • Kox M
    • Waalders NJB
    • Kooistra EJ
    • Gerretsen J
    • Pickkers P

    Cytokine levels in critically ill patients with COVID-19 and other conditions.

    JAMA. 2020; 324: 1565-1567

  • 158.
    • Monneret G
    • Benlyamani I
    • Gossez M
    • et al.

    COVID-19: What type of cytokine storm are we dealing with?.

    J Med Virol. 2021; 93: 197-198

  • 159.
    • Zhou Z
    • Ren L
    • Zhang L
    • et al.

    Heightened innate immune responses in the respiratory tract of COVID-19 patients.

    Cell Host Microbe. 2020; 27: 883-890.e2

  • 160.
    • Xiong Y
    • Liu Y
    • Cao L
    • et al.

    Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients.

    Emerg Microbes Infect. 2020; 9: 761-770

  • 161.
    • Ronit A
    • Berg RMG
    • Bay JT
    • et al.

    Compartmental immunophenotyping in COVID-19 ARDS: a case series.

    J Allergy Clin Immunol. 2021; 147: 81-91

  • 162.
    • Carvelli J
    • Demaria O
    • Vély F
    • et al.

    Association of COVID-19 inflammation with activation of the C5a-C5aR1 axis.

    Nature. 2020; 588: 146-150

  • 163.
    • Yang L
    • Han Y
    • Nilsson-Payant BE
    • et al.

    A human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model virus infection in human cells and organoids.

    Cell Stem Cell. 2020; 27: 125-136.e7

  • 164.
    • Nienhold R
    • Ciani Y
    • Koelzer VH
    • et al.

    Two distinct immunopathological profiles in autopsy lungs of COVID-19.

    Nat Commun. 2020; 115086

  • 165.
    • Toldo S
    • Bussani R
    • Nuzzi V
    • et al.

    Inflammasome formation in the lungs of patients with fatal COVID-19.

    Inflamm Res. 2021; 70: 7-10

  • 166.
    • Li MY
    • Li L
    • Zhang Y
    • Wang XS

    Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues.

    Infect Dis Poverty. 2020; 9: 45

  • 167.
    • Lachmann G
    • Knaak C
    • Vorderwülbecke G
    • et al.

    Hyperferritinemia in critically ill patients.

    Crit Care Med. 2020; 48: 459-465

  • 168.
    • Kyriazopoulou E
    • Leventogiannis K
    • Norrby-Teglund A
    • et al.

    Macrophage activation-like syndrome: an immunological entity associated with rapid progression to death in sepsis.

    BMC Med. 2017; 15: 172

  • 169.
    • Mesas AE
    • Cavero-Redondo I
    • Álvarez-Bueno C
    • et al.

    Predictors of in-hospital COVID-19 mortality: a comprehensive systematic review and meta-analysis exploring differences by age, sex and health conditions.

    PLoS One. 2020; 15e0241742

  • 170.

    Ferritin in the coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis.

    J Clin Lab Anal. 2020; 34e23618

  • 171.
    • Masetti C
    • Generali E
    • Colapietro F
    • et al.

    High mortality in COVID-19 patients with mild respiratory disease.

    Eur J Clin Invest. 2020; 50e13314

  • 172.
    • Al-Samkari H
    • Karp Leaf RS
    • Dzik WH
    • et al.

    COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection.

    Blood. 2020; 136: 489-500

  • 173.
    • Huet T
    • Beaussier H
    • Voisin O
    • et al.

    Anakinra for severe forms of COVID-19: a cohort study.

    Lancet Rheumatol. 2020; 2: e393-e400

  • 174.
    • Cavalli G
    • De Luca G
    • Campochiaro C
    • et al.

    Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study.

    Lancet Rheumatol. 2020; 2: e325-e331

  • 175.
    • Dimopoulos G
    • de Mast Q
    • Markou N
    • et al.

    Favorable anakinra responses in severe covid-19 patients with secondary hemophagocytic lymphohistiocytosis.

    Cell Host Microbe. 2020; 28: 117-123.e1

  • 176.
    • Vasquez-Bonilla WO
    • Orozco R
    • Argueta V
    • et al.

    A review of the main histopathological findings in coronavirus disease 2019.

    Hum Pathol. 2020; 105: 74-83

  • 177.
    • Fardet L
    • Galicier L
    • Lambotte O
    • et al.

    Development and validation of the HScore, a score for the diagnosis of reactive hemophagocytic syndrome.

    Arthritis Rheumatol. 2014; 66: 2613-2620

  • 178.

    Immune-inflammatory parameters in COVID-19 cases: a systematic review and meta-analysis.

    Front Med (Lausanne). 2020; 7: 301

  • 179.
    • Kox M
    • Frenzel T
    • Schouten J
    • van de Veerdonk FL
    • Koenen HJPM
    • Pickkers P

    COVID-19 patients exhibit less pronounced immune suppression compared with bacterial septic shock patients.

    Crit Care. 2020; 24: 263

  • 180.
    • Cugno M
    • Meroni PL
    • Gualtierotti R
    • et al.

    Complement activation in patients with COVID-19: a novel therapeutic target.

    J Allergy Clin Immunol. 2020; 146: 215-217

  • 181.
    • Holter JC
    • Pischke SE
    • de Boer E
    • et al.

    Systemic complement activation is associated with respiratory failure in COVID-19 hospitalized patients.

    Proc Natl Acad Sci USA. 2020; 117: 25018-25025

  • 182.
    • Schuetz P
    • Albrich W
    • Mueller B

    Procalcitonin for diagnosis of infection and guide to antibiotic decisions: past, present and future.

    BMC Med. 2011; 9: 107

  • 183.
    • Tujula B
    • Hämäläinen S
    • Kokki H
    • Pulkki K
    • Kokki M

    Review of clinical practice guidelines on the use of procalcitonin in infections.

    Infect Dis (Lond). 2020; 52: 227-234

  • 184.
    • Bao J
    • Li C
    • Zhang K
    • Kang H
    • Chen W
    • Gu B

    Comparative analysis of laboratory indexes of severe and non-severe patients infected with COVID-19.

    Clin Chim Acta. 2020; 509: 180-194

  • 185.

    Crucial laboratory parameters in COVID-19 diagnosis and prognosis: an updated meta-analysis.

    Med Clin (Barc). 2020; 155: 143-151

  • 186.
    • van Berkel M
    • Kox M
    • Frenzel T
    • Pickkers P
    • Schouten J

    Biomarkers for antimicrobial stewardship: a reappraisal in COVID-19 times?.

    Crit Care. 2020; 24: 600

  • 187.

    Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study.

    Lancet Respir Med. 2020; 8: 475-481

  • 188.
    • Apicella M
    • Campopiano MC
    • Mantuano M
    • Mazoni L
    • Coppelli A
    • Del Prato S

    COVID-19 in people with diabetes: understanding the reasons for worse outcomes.

    Lancet Diabetes Endocrinol. 2020; 8: 782-792

  • 189.
    • Yang JK
    • Feng Y
    • Yuan MY
    • et al.

    Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS.

    Diabet Med. 2006; 23: 623-628

  • 190.
    • Taneera J
    • El-Huneidi W
    • Hamad M
    • Mohammed AK
    • Elaraby E
    • Hachim MY

    Expression profile of SARS-CoV-2 host receptors in human pancreatic islets revealed upregulation of ACE2 in diabetic donors.

    Biology (Basel). 2020; 9: E215

  • 191.

    COVID-19 and the endocrine system: exploring the unexplored.

    J Endocrinol Invest. 2020; 43: 1027-1031

  • 192.
    • Zhu L
    • She ZG
    • Cheng X
    • et al.

    Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes.

    Cell Metab. 2020; 31: 1068-1077.e3

  • 193.

    Exploring diseases/traits and blood proteins causally related to expression of ACE2, the putative receptor of SARS-CoV-2: a mendelian randomization analysis highlights tentative relevance of diabetes-related traits.

    Diabetes Care. 2020; 43: 1416-1426

  • 194.
    • Marshall RJ
    • Armart P
    • Hulme KD
    • et al.

    Glycemic variability in diabetes increases the severity of influenza.

    MBio. 2020; 11: e02841-e02849

  • 195.
    • Nielsen TB
    • Pantapalangkoor P
    • Yan J
    • et al.

    Diabetes exacerbates infection via hyperinflammation by signaling through TLR4 and RAGE.

    MBio. 2017; 8: e00818-e00917

  • 196.

    COVID-19, diabetes mellitus and ACE2: the conundrum.

    Diabetes Res Clin Pract. 2020; 162108132

  • 197.
    • Busse LW
    • Chow JH
    • McCurdy MT
    • Khanna AK

    COVID-19 and the RAAS-a potential role for angiotensin II?.

    Crit Care. 2020; 24: 136

  • 198.
    • Fosbøl EL
    • Butt JH
    • Østergaard L
    • et al.

    Association of angiotensin-converting enzyme inhibitor or angiotensin receptor blocker use with COVID-19 diagnosis and mortality.

    JAMA. 2020; 324: 168-177

  • 199.
    • Han Y
    • Runge MS
    • Brasier AR

    Angiotensin II induces interleukin-6 transcription in vascular smooth muscle cells through pleiotropic activation of nuclear factor-kappa B transcription factors.

    Circ Res. 1999; 84: 695-703

  • 200.
    • Franco R
    • Rivas-Santisteban R
    • Serrano-Marín J
    • Rodríguez-Pérez AI
    • Labandeira-García JL
    • Navarro G

    SARS-CoV-2 as a factor to disbalance the renin-angiotensin system: a suspect in the case of exacerbated IL-6 production.

    J Immunol. 2020; 205: 1198-1206

  • 201.
    • Verdecchia P
    • Cavallini C
    • Spanevello A
    • Angeli F

    The pivotal link between ACE2 deficiency and SARS-CoV-2 infection.

    Eur J Intern Med. 2020; 76: 14-20

  • 202.
    • Gebhard C
    • Regitz-Zagrosek V
    • Neuhauser HK
    • Morgan R
    • Klein SL

    Impact of sex and gender on COVID-19 outcomes in Europe.

    Biol Sex Differ. 2020; 11: 29

  • 203.
    • Montopoli M
    • Zumerle S
    • Vettor R
    • et al.

    Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (N = 4532).

    Ann Oncol. 2020; 31: 1040-1045

  • 204.
    • Scully EP
    • Haverfield J
    • Ursin RL
    • Tannenbaum C
    • Klein SL

    Considering how biological sex impacts immune responses and COVID-19 outcomes.

    Nat Rev Immunol. 2020; 20: 442-447

  • 205.

    Dysregulation of immune response in patients with Coronavirus 2019 (COVID-19) in Wuhan, China.

    Clin Infect Dis. 2020; 71: 762-768

  • 206.
    • Ma A
    • Cheng J
    • Yang J
    • Dong M
    • Liao X
    • Kang Y

    Neutrophil-to-lymphocyte ratio as a predictive biomarker for moderate-severe ARDS in severe COVID-19 patients.

    Crit Care. 2020; 24: 288

  • 207.
    • Carissimo G
    • Xu W
    • Kwok I
    • et al.

    Whole blood immunophenotyping uncovers immature neutrophil-to-VD2 T-cell ratio as an early marker for severe COVID-19.

    Nat Commun. 2020; 115243

  • 208.
    • Kuri-Cervantes L
    • Pampena MB
    • Meng W
    • et al.

    Comprehensive mapping of immune perturbations associated with severe COVID-19.

    Sci Immunol. 2020; 5eabd7114

  • 209.
    • Bordoni V
    • Sacchi A
    • Cimini E
    • et al.

    An inflammatory profile correlates with decreased frequency of cytotoxic cells in COVID-19.

    Clin Infect Dis. 2020; 71: 2272-2275

  • 210.
    • Silvin A
    • Chapuis N
    • Dunsmore G
    • et al.

    Elevated calprotectin and abnormal myeloid cell subsets discriminate severe from mild COVID-19.

    Cell. 2020; 182: 1401-1418.e18

  • 211.
    • Schulte-Schrepping J
    • Reusch N
    • Paclik D
    • et al.

    Severe COVID-19 is marked by a dysregulated myeloid cell compartment.

    Cell. 2020; 182: 1419-1440.e23

  • 212.
    • Agrati C
    • Sacchi A
    • Bordoni V
    • et al.

    Expansion of myeloid-derived suppressor cells in patients with severe coronavirus disease (COVID-19).

    Cell Death Differ. 2020; 27: 3196-3207

  • 213.
    • Brudecki L
    • Ferguson DA
    • McCall CE
    • El Gazzar M

    Myeloid-derived suppressor cells evolve during sepsis and can enhance or attenuate the systemic inflammatory response.

    Infect Immun. 2012; 80: 2026-2034

  • 214.
    • Wilk AJ
    • Rustagi A
    • Zhao NQ
    • et al.

    A single-cell atlas of the peripheral immune response in patients with severe COVID-19.

    Nat Med. 2020; 26: 1070-1076

  • 215.
    • Wang J
    • Jiang M
    • Chen X
    • Montaner LJ

    Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts.

    J Leukoc Biol. 2020; 108: 17-41

  • 216.
    • Zuo Y
    • Yalavarthi S
    • Shi H
    • et al.

    Neutrophil extracellular traps in COVID-19.

    JCI Insight. 2020; 5e138999

  • 217.
    • Barnes BJ
    • Adrover JM
    • Baxter-Stoltzfus A
    • et al.

    Targeting potential drivers of COVID-19: Neutrophil extracellular traps.

    J Exp Med. 2020; 217e20200652

  • 218.
    • Carter MJ
    • Fish M
    • Jennings A
    • et al.

    Immunophenotyping of circulating leukocytes reveal non-specific activation of innate and adaptive immune systems in multi-system inflammatory syndrome of childhood temporally associated with SARS-Cov-2 infection: descriptive cohort study.

    Preprints. 2020; ()

  • 219.
    • Payen D
    • Cravat M
    • Maadadi H
    • et al.

    A longitudinal study of immune cells in severe COVID-19 patients.

    Front Immunol. 2020; 11580250

  • 220.
    • Laing AG
    • Lorenc A
    • Del Molino Del Barrio I
    • et al.

    A dynamic COVID-19 immune signature includes associations with poor prognosis.

    Nat Med. 2020; 26: 1623-1635

  • 221.
    • Zhou Y
    • Fu B
    • Zheng X
    • et al.

    Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients.

    Natl Sci Rev. 2020; 7: 998-1002

  • 222.
    • Liao M
    • Liu Y
    • Yuan J
    • et al.

    Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19.

    Nat Med. 2020; 26: 842-844

  • 223.
    • Sanchez-Cerrillo I
    • Landete P
    • Aldave B
    • et al.

    COVID-19 severity associates with pulmonary redistribution of CD1c+ DCs and inflammatory transitional and nonclassical monocytes.

    J Clin Invest. 2020; 130: 6290-6300

  • 224.
    • Grant RA
    • Morales-Nebreda L
    • Markov NS
    • et al.

    Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia.

    Nature. 2021; 590: 635-641

  • 225.
    • Leijte GP
    • Rimmelé T
    • Kox M
    • et al.

    Monocytic HLA-DR expression kinetics in septic shock patients with different pathogens, sites of infection and adverse outcomes.

    Crit Care. 2020; 24: 110

  • 226.
    • Torrance HDT
    • Longbottom ER
    • Vivian ME
    • et al.

    Post-operative immune suppression is mediated via reversible, Interleukin-10 dependent pathways in circulating monocytes following major abdominal surgery.

    PLoS One. 2018; 13e0203795

  • 227.
    • Cheron A
    • Floccard B
    • Allaouchiche B
    • et al.

    Lack of recovery in monocyte human leukocyte antigen-DR expression is independently associated with the development of sepsis after major trauma.

    Crit Care. 2010; 14: R208

  • 228.
    • Monneret G
    • Lepape A
    • Voirin N
    • et al.

    Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock.

    Intensive Care Med. 2006; 32: 1175-1183

  • 229.
    • Kim OY
    • Monsel A
    • Bertrand M
    • Coriat P
    • Cavaillon JM
    • Adib-Conquy M

    Differential down-regulation of HLA-DR on monocyte subpopulations during systemic inflammation.

    Crit Care. 2010; 14: R61

  • 230.
    • Flohé S
    • Lendemans S
    • Schade FU
    • Kreuzfelder E
    • Waydhas C

    Influence of surgical intervention in the immune response of severely injured patients.

    Intensive Care Med. 2004; 30: 96-102

  • 231.
    • Spinetti T
    • Hirzel C
    • Fux M
    • et al.

    Reduced monocytic human leukocyte antigen-DR expression indicates immunosuppression in critically ill COVID-19 patients.

    Anesth Analg. 2020; 131: 993-999

  • 232.
    • Wang F
    • Hou H
    • Yao Y
    • et al.

    Systemically comparing host immunity between survived and deceased COVID-19 patients.

    Cell Mol Immunol. 2020; 17: 875-877

  • 233.
    • Jeannet R
    • Daix T
    • Formento R
    • Feuillard J
    • François B

    Severe COVID-19 is associated with deep and sustained multifaceted cellular immunosuppression.

    Intensive Care Med. 2020; 46: 1769-1771

  • 234.
    • Monneret G
    • Cour M
    • Viel S
    • Venet F
    • Argaud L

    Coronavirus disease 2019 as a particular sepsis: a 2-week follow-up of standard immunological parameters in critically ill patients.

    Intensive Care Med. 2020; 46: 1764-1765

  • 235.
    • Remy S
    • Gossez M
    • Belot A
    • et al.

    Massive increase in monocyte HLA-DR expression can be used to discriminate between septic shock and hemophagocytic lymphohistiocytosis-induced shock.

    Crit Care. 2018; 22: 213

  • 236.
    • Le Tulzo Y
    • Pangault C
    • Amiot L
    • et al.

    Monocyte human leukocyte antigen-DR transcriptional downregulation by cortisol during septic shock.

    Am J Respir Crit Care Med. 2004; 169: 1144-1151

  • 237.

    The CD8 T cell response to respiratory virus infections.

    Front Immunol. 2018; 9: 678

  • 238.

    Decreased T cell populations contribute to the increased severity of COVID-19.

    Clin Chim Acta. 2020; 508: 110-114

  • 239.

    As plain as the nose on your face: the case for a nasal (mucosal) route of vaccine administration for Covid-19 disease prevention.

    Front Immunol. 2020; 11591897

  • 240.
    • Chen R
    • Sang L
    • Jiang M
    • et al.

    Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China.

    J Allergy Clin Immunol. 2020; 146: 89-100

  • 241.
    • Jiang M
    • Guo Y
    • Luo Q
    • et al.

    T-cell subset counts in peripheral blood can be used as discriminatory biomarkers for diagnosis and severity prediction of coronavirus disease 2019.

    J Infect Dis. 2020; 222: 198-202

  • 242.

    Clinical and immune features of hospitalized pediatric patients with coronavirus disease 2019 (COVID-19) in Wuhan, China.

    JAMA Netw Open. 2020; 3e2010895

  • 243.
    • De Biasi S
    • Meschiari M
    • Gibellini L
    • et al.

    Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia.

    Nat Commun. 2020; 113434

  • 244.
    • Wang F
    • Nie J
    • Wang H
    • et al.

    Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia.

    J Infect Dis. 2020; 221: 1762-1769

  • 245.
    • Shi H
    • Wang W
    • Yin J
    • et al.

    The inhibition of IL-2/IL-2R gives rise to CD8+ T cell and lymphocyte decrease through JAK1-STAT5 in critical patients with COVID-19 pneumonia.

    Cell Death Dis. 2020; 11: 429

  • 246.
    • Hou H
    • Zhang B
    • Huang H
    • et al.

    Using IL-2R/lymphocytes for predicting the clinical progression of patients with COVID-19.

    Clin Exp Immunol. 2020; 201: 76-84

  • 247.
    • Luo M
    • Liu J
    • Jiang W
    • Yue S
    • Liu H
    • Wei S

    IL-6 and CD8+ T cell counts combined are an early predictor of in-hospital mortality of patients with COVID-19.

    JCI Insight. 2020; 5e139024

  • 248.
    • Urra JM
    • Cabrera CM
    • Porras L
    • Ródenas I

    Selective CD8 cell reduction by SARS-CoV-2 is associated with a worse prognosis and systemic inflammation in COVID-19 patients.

    Clin Immunol. 2020; 217108486

  • 249.

    Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients.

    EBioMedicine. 2020; 55102763

  • 250.
    • Wang F
    • Hou H
    • Luo Y
    • et al.

    The laboratory tests and host immunity of COVID-19 patients with different severity of illness.

    JCI Insight. 2020; 5e137799

  • 251.
    • Remy KE
    • Mazer M
    • Striker DA
    • et al.

    Severe immunosuppression and not a cytokine storm characterizes COVID-19 infections.

    JCI Insight. 2020; 5e140329

  • 252.
    • Gimenez E
    • Albert E
    • Torres I
    • et al.

    SARS-CoV-2-reactive interferon-gamma-producing CD8+ T cells in patients hospitalized with coronavirus disease 2019.

    J Med Virol. 2021; 93: 375-382

  • 253.
    • Grifoni A
    • Weiskopf D
    • Ramirez SI
    • et al.

    Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals.

    Cell. 2020; 181: 1489-1501.e15

  • 254.
    • Schaller T
    • Hirschbühl K
    • Burkhardt K
    • et al.

    Postmortem examination of patients with COVID-19.

    JAMA. 2020; 323: 2518-2520

  • 255.
    • Fajnzylber J
    • Regan J
    • Coxen K
    • et al.

    SARS-CoV-2 viral load is associated with increased disease severity and mortality.

    Nat Commun. 2020; 115493

  • 256.
    • Rouzé A
    • Martin-Loeches I
    • Povoa P
    • et al.

    Relationship between SARS-CoV-2 infection and the incidence of ventilator-associated lower respiratory tract infections: a European multicenter cohort study.

    Intensive Care Med. 2021; 47: 188-198

  • 257.
    • Scharenberg M
    • Vangeti S
    • Kekäläinen E
    • et al.

    Influenza A virus infection induces hyperresponsiveness in human lung tissue-resident and peripheral blood NK cells.

    Front Immunol. 2019; 101116

  • 258.
    • Björkström NK
    • Ljunggren HG
    • Michaëlsson J

    Emerging insights into natural killer cells in human peripheral tissues.

    Nat Rev Immunol. 2016; 16: 310-320

  • 259.
    • Jiang Y
    • Wei X
    • Guan J
    • et al.

    COVID-19 pneumonia: CD8+ T and NK cells are decreased in number but compensatory increased in cytotoxic potential.

    Clin Immunol. 2020; 218108516

  • 260.
    • Marquardt N
    • Kekäläinen E
    • Chen P
    • et al.

    Human lung natural killer cells are predominantly comprised of highly differentiated hypofunctional CD69CD56dim cells.

    J Allergy Clin Immunol. 2017; 139: 1321-1330.e4

  • 261.
    • Maucourant C
    • Filipovic I
    • Ponzetta A
    • et al.

    Natural killer cell immunotypes related to COVID-19 disease severity.

    Sci Immunol. 2020; 5eabd6832

  • 262.
    • Nielsen SCA
    • Yang F
    • Jackson KJL
    • et al.

    Human B cell clonal expansion and convergent antibody responses to SARS-CoV-2.

    Cell Host Microbe. 2020; 28 (): 516

  • 263.
    • Galson JD
    • Schaetzle S
    • Bashford-Rogers RJM
    • et al.

    Deep sequencing of B cell receptor repertoires from COVID-19 patients reveals strong convergent immune signatures.

    Front Immunol. 2020; 11605170

  • 264.
    • Robbiani DF
    • Gaebler C
    • Muecksch F
    • et al.

    Convergent antibody responses to SARS-CoV-2 in convalescent individuals.

    Nature. 2020; 584: 437-442

  • 265.
    • Zhu Z
    • Chakraborti S
    • He Y
    • et al.

    Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies.

    Proc Natl Acad Sci USA. 2007; 104: 12123-12128

  • 266.
    • Zhang H
    • Wang G
    • Li J
    • et al.

    Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies.

    J Virol. 2004; 78: 6938-6945

  • 267.

    Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients' B cells.

    Cell. 2020; 182: 73-84.e16

  • 268.

    Human neutralizing antibodies elicited by SARS-CoV-2 infection.

    Nature. 2020; 584: 115-119

  • 269.
    • Quinti I
    • Lougaris V
    • Milito C
    • et al.

    A possible role for B cells in COVID-19? Lesson from patients with agammaglobulinemia.

    J Allergy Clin Immunol. 2020; 146: 211-213.e4

  • 270.
    • Soresina A
    • Moratto D
    • Chiarini M
    • et al.

    Two X-linked agammaglobulinemia patients develop pneumonia as COVID-19 manifestation but recover.

    Pediatr Allergy Immunol. 2020; 31: 565-569

  • 271.
    • Montero-Escribano P
    • Matías-Guiu J
    • Gómez-Iglesias P
    • Porta-Etessam J
    • Pytel V
    • Matias-Guiu JA

    Anti-CD20 and COVID-19 in multiple sclerosis and related disorders: a case series of 60 patients from Madrid, Spain.

    Mult Scler Relat Disord. 2020; 42102185

  • 272.

    Anti-CD20 immunosuppressive disease-modifying therapies and COVID-19.

    Mult Scler Relat Disord. 2020; 41102135

  • 273.
    • Treon SP
    • Castillo JJ
    • Skarbnik AP
    • et al.

    The BTK inhibitor ibrutinib may protect against pulmonary injury in COVID-19-infected patients.

    Blood. 2020; 135: 1912-1915

  • 274.

    In defense of evidence-based medicine for the treatment of COVID-19 acute respiratory distress syndrome.

    Ann Am Thorac Soc. 2020; 17: 787-789

  • [ad_2]

    Source link