This study sought to clone and sequence the interferon-γ (IFN-γ) gene of the Fischer’s lovebird parrot (Agapornis fischeri). Raw264.7 cells treated with the expressed IFN-γ protein exhibited an upregulation in inducible nitric oxide synthase protein expression and nitric oxide (NO) production coupled with increases in phagocytosis and pinocytosis, as well as an induction of interferon-stimulated genes through the activation of the NF-κB factor, all of which are indicators of the innate immune…
Virus Res. 2021 Nov 25:198647. doi: 10.1016/j.virusres.2021.198647. Online ahead of print.
ABSTRACT
This study sought to clone and sequence the interferon-γ (IFN-γ) gene of the Fischer’s lovebird parrot (Agapornis fischeri). Raw264.7 cells treated with the expressed IFN-γ protein exhibited an upregulation in inducible nitric oxide synthase protein expression and nitric oxide (NO) production coupled with increases in phagocytosis and pinocytosis, as well as an induction of interferon-stimulated genes through the activation of the NF-κB factor, all of which are indicators of the innate immune responses of the activated macrophages. Similar to the IFN-γ protein of other species, the NO production activity of the parrot IFN-γ protein decreased by 80% after exposure at 60°C for 4 minutes. Additionally, only half of the NO production activity of the parrot IFN-γ protein remained upon exposure to HCl for 30 minutes. These findings suggested that the parrot IFN-γ protein was heat-labile and sensitive to acidic conditions. Therefore, all of these effects contributed to the blockage of the uptake of BFDV virus-like particles (VLPs) by cells, the nuclear entry of the Cap protein of BFDV VLPs, and the clearance of the virus from BFDV-infected parrots by the IFN-γ protein of Agapornis fischeri. This study is the first to describe the cloning of the IFN-γ gene of Agapornis fischeri and characterize the anti-beak and feather disease virus activity of the IFN-γ protein of Agapornis fischeri.
PMID:34838936 | DOI:10.1016/j.virusres.2021.198647