• 1.

    Li L, Goedegebuure P, Mardis ER, Ellis MJ, Zhang X, Herndon JM, et al. Cancer genome sequencing and its implications for personalized cancer vaccines. Cancers (Basel). 2011;3(4):4191–211. doi.org/10.3390/cancers3044191.

    Article 

    Google Scholar
     

  • 2.

    Li L, Goedegebuure SP, Gillanders WE. Preclinical and clinical development of neoantigen vaccines. Ann Oncol. 2017;28(suppl_12):xii11–xii7.

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, Mulder GE, Toebes M, Vesely MD, Lam SSK, Korman AJ, Allison JP, Freeman GJ, Sharpe AH, Pearce EL, Schumacher TN, Aebersold R, Rammensee HG, Melief CJM, Mardis ER, Gillanders WE, Artyomov MN, Schreiber RD. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515(7528):577–81. doi.org/10.1038/nature13988.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R, Magrini VJ, Arthur CD, White JM, Chen YS, Shea LK, Hundal J, Wendl MC, Demeter R, Wylie T, Allison JP, Smyth MJ, Old LJ, Mardis ER, Schreiber RD. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature. 2012;482(7385):400–4. doi.org/10.1038/nature10755.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Zhang X, Kim S, Hundal J, Herndon JM, Li S, Petti AA, Soysal SD, Li L, McLellan MD, Hoog J, Primeau T, Myers N, Vickery TL, Sturmoski M, Hagemann IS, Miller CA, Ellis MJ, Mardis ER, Hansen T, Fleming TP, Goedegebuure SP, Gillanders WE. Breast cancer neoantigens can induce CD8+ T-cell responses and antitumor immunity. Cancer Immunol Res. 2017;5(7):516–23. doi.org/10.1158/2326-6066.CIR-16-0264.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, Ly A, Lie WR, Hildebrand WH, Mardis ER, Linette GP. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science. 2015;348(6236):803–8. doi.org/10.1126/science.aaa3828.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, Chen C, Olive O, Carter TA, Li S, Lieb DJ, Eisenhaure T, Gjini E, Stevens J, Lane WJ, Javeri I, Nellaiappan K, Salazar AM, Daley H, Seaman M, Buchbinder EI, Yoon CH, Harden M, Lennon N, Gabriel S, Rodig SJ, Barouch DH, Aster JC, Getz G, Wucherpfennig K, Neuberg D, Ritz J, Lander ES, Fritsch EF, Hacohen N, Wu CJ. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547(7662):217–21. doi.org/10.1038/nature22991.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8. doi.org/10.1126/science.aaa1348.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Lower M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547(7662):222–6. doi.org/10.1038/nature23003.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 10.

    Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanovic S, Gouttefangeas C, et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature. 2019;565(7738):240–5. doi.org/10.1038/s41586-018-0810-y.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 11.

    Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, Oliveira G, Giobbie-Hurder A, Felt K, Gjini E, Shukla SA, Hu Z, Li L, le PM, Allesøe RL, Richman AR, Kowalczyk MS, Abdelrahman S, Geduldig JE, Charbonneau S, Pelton K, Iorgulescu JB, Elagina L, Zhang W, Olive O, McCluskey C, Olsen LR, Stevens J, Lane WJ, Salazar AM, Daley H, Wen PY, Chiocca EA, Harden M, Lennon NJ, Gabriel S, Getz G, Lander ES, Regev A, Ritz J, Neuberg D, Rodig SJ, Ligon KL, Suvà ML, Wucherpfennig KW, Hacohen N, Fritsch EF, Livak KJ, Ott PA, Wu CJ, Reardon DA. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 2019;565(7738):234–9. doi.org/10.1038/s41586-018-0792-9.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 12.

    Kutzler MA, Weiner DB. DNA vaccines: ready for prime time? Nat Rev Genet. 2008;9(10):776–88. doi.org/10.1038/nrg2432.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Pascolo S, Bervas N, Ure JM, Smith AG, Lemonnier FA, Perarnau B. HLA-A2.1-restricted education and cytolytic activity of CD8(+) T lymphocytes from beta2 microglobulin (beta2m) HLA-A2.1 monochain transgenic H-2Db beta2m double knockout mice. J Exp Med. 1997;185(12):2043–51. doi.org/10.1084/jem.185.12.2043.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Snell GD, Cloudman AM, Woodworth E. Tumor immunity in mice, induced with lyophilized tissue, as influenced by tumor strain, host strain, source of tissue, and dosage. Cancer Res. 1948;8(9):429–37.

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Lelekakis M, Moseley JM, Martin TJ, Hards D, Williams E, Ho P, Lowen D, Javni J, Miller FR, Slavin J, Anderson RL. A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis. 1999;17(2):163–70. doi.org/10.1023/A:1006689719505.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 16.

    Hundal J, Carreno BM, Petti AA, Linette GP, Griffith OL, Mardis ER, Griffith M. pVAC-Seq: a genome-guided in silico approach to identifying tumor neoantigens. Genome Med. 2016;8(1):11. doi.org/10.1186/s13073-016-0264-5.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Hundal J, Kiwala S, McMichael J, Miller CA, Xia H, Wollam AT, Liu CJ, Zhao S, Feng YY, Graubert AP, Wollam AZ, Neichin J, Neveau M, Walker J, Gillanders WE, Mardis ER, Griffith OL, Griffith M. pVACtools: a computational toolkit to identify and visualize cancer neoantigens. Cancer Immunol Res. 2020;8(3):409–20. doi.org/10.1158/2326-6066.CIR-19-0401.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Dantuma NP, Lindsten K, Glas R, Jellne M, Masucci MG. Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nat Biotechnol. 2000;18(5):538–43. doi.org/10.1038/75406.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 19.

    Li L, Herndon JM, Truscott SM, Hansen TH, Fleming TP, Goedegebuure P, Gillanders WE. Engineering superior DNA vaccines: MHC class I single chain trimers bypass antigen processing and enhance the immune response to low affinity antigens. Vaccine. 2010;28(8):1911–8. doi.org/10.1016/j.vaccine.2009.10.096.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Bins AD, Jorritsma A, Wolkers MC, Hung CF, Wu TC, Schumacher TN, et al. A rapid and potent DNA vaccination strategy defined by in vivo monitoring of antigen expression. Nat Med. 2005;11(8):899–904. doi.org/10.1038/nm1264.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 21.

    Lybarger L, Wang X, Harris MR, Virgin HW, Hansen TH. Virus subversion of the MHC class I peptide-loading complex. Immunity. 2003;18(1):121–30. doi.org/10.1016/S1074-7613(02)00509-5.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 22.

    Wang X, Yu YY, Myers N, Hansen TH. Decoupling the role of ubiquitination for the dislocation versus degradation of major histocompatibility complex (MHC) class I proteins during endoplasmic reticulum-associated degradation (ERAD). J Biol Chem. 2013;288(32):23295–306. doi.org/10.1074/jbc.M113.482018.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Kim S, Li L, McMurtrey CP, Hildebrand WH, Weidanz JA, Gillanders WE, et al. Single-chain HLA-A2 MHC trimers that incorporate an immundominant peptide elicit protective T cell immunity against lethal West Nile virus infection. J Immunol. 2010;184(8):4423–30. doi.org/10.4049/jimmunol.0903955.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Velders MP, Weijzen S, Eiben GL, Elmishad AG, Kloetzel PM, Higgins T, Ciccarelli RB, Evans M, Man S, Smith L, Kast WM. Defined flanking spacers and enhanced proteolysis is essential for eradication of established tumors by an epitope string DNA vaccine. J Immunol. 2001;166(9):5366–73. doi.org/10.4049/jimmunol.166.9.5366.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 25.

    Varshavsky A. The N-end rule pathway of protein degradation. Genes Cells. 1997;2(1):13–28. doi.org/10.1046/j.1365-2443.1997.1020301.x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 26.

    Rock KL, Goldberg AL. Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu Rev Immunol. 1999;17(1):739–79. doi.org/10.1146/annurev.immunol.17.1.739.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 27.

    Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 1992;52(6):1399–405.

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Ewens A, Mihich E, Ehrke MJ. Distant metastasis from subcutaneously grown E0771 medullary breast adenocarcinoma. Anticancer Res. 2005;25(6B):3905–15.

    PubMed 

    Google Scholar
     

  • 29.

    Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. NetMHCpan-4.0: improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol. 2017;199(9):3360–8. doi.org/10.4049/jimmunol.1700893.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Davis HL, Michel ML, Whalen RG. DNA-based immunization induces continuous secretion of hepatitis B surface antigen and high levels of circulating antibody. Hum Mol Genet. 1993;2(11):1847–51. doi.org/10.1093/hmg/2.11.1847.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 31.

    Fynan EF, Webster RG, Fuller DH, Haynes JR, Santoro JC, Robinson HL. DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci U S A. 1993;90(24):11478–82. doi.org/10.1073/pnas.90.24.11478.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Tang DC, DeVit M, Johnston SA. Genetic immunization is a simple method for eliciting an immune response. Nature. 1992;356(6365):152–4. doi.org/10.1038/356152a0.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 33.

    Ulmer JB, Donnelly JJ, Parker SE, Rhodes GH, Felgner PL, Dwarki VJ, Gromkowski S, Deck R, DeWitt C, Friedman A, et Heterologous protection against influenza by injection of DNA encoding a viral protein. Science. 1993;259(5102):1745–9, doi: doi.org/10.1126/science.8456302.

  • 34.

    Ferraro B, Morrow MP, Hutnick NA, Shin TH, Lucke CE, Weiner DB. Clinical applications of DNA vaccines: current progress. Clin Infect Dis. 2011;53(3):296–302. doi.org/10.1093/cid/cir334.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Alexander J, Oseroff C, Dahlberg C, Qin M, Ishioka G, Beebe M, Fikes J, Newman M, Chesnut RW, Morton PA, Fok K, Appella E, Sette A. A decaepitope polypeptide primes for multiple CD8+ IFN-gamma and Th lymphocyte responses: evaluation of multiepitope polypeptides as a mode for vaccine delivery. J Immunol. 2002;168(12):6189–98. doi.org/10.4049/jimmunol.168.12.6189.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 36.

    Duperret EK, Perales-Puchalt A, Stoltz R, G HH, Mandloi N, Barlow J, et al. A synthetic DNA, multi-neoantigen vaccine drives predominately MHC class I CD8(+) T-cell responses, impacting tumor challenge. Cancer Immunol Res 2019;7(2):174–182, doi: doi.org/10.1158/2326-6066.CIR-18-0283.

  • 37.

    Levy A, Pitcovski J, Frankenburg S, Elias O, Altuvia Y, Margalit H, Peretz T, Golenser J, Lotem M. A melanoma multiepitope polypeptide induces specific CD8+ T-cell response. Cell Immunol. 2007;250(1–2):24–30. doi.org/10.1016/j.cellimm.2008.01.001.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 38.

    Bijker MS, van den Eeden SJ, Franken KL, Melief CJ, Offringa R, van der Burg SH. CD8+ CTL priming by exact peptide epitopes in incomplete Freund’s adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity. J Immunol. 2007;179(8):5033–40. doi.org/10.4049/jimmunol.179.8.5033.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 39.

    Kreiter S, Castle JC, Tureci O, Sahin U. Targeting the tumor mutanome for personalized vaccination therapy. Oncoimmunology. 2012;1(5):768–9. doi.org/10.4161/onci.19727.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Neisig A, Roelse J, Sijts AJ, Ossendorp F, Feltkamp MC, Kast WM, et al. Major differences in transporter associated with antigen presentation (TAP)-dependent translocation of MHC class I-presentable peptides and the effect of flanking sequences. J Immunol. 1995;154(3):1273–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Kiwala S, Graubert A, mrjosh, Wollam A, Griffith M, amberzw, et al. griffithlab/pVACtools: 2.0.0 (version v2.0.0). Github. doi: doi.org/10.5281/zenodo.4520122. 2021.

  • 42.

    Johnson ES, Bartel B, Seufert W, Varshavsky A. Ubiquitin as a degradation signal. EMBO J. 1992;11(2):497–505. doi.org/10.1002/j.1460-2075.1992.tb05080.x.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Johnson ES, Ma PC, Ota IM, Varshavsky A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem. 1995;270(29):17442–56. doi.org/10.1074/jbc.270.29.17442.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 44.

    Kim PK, Hailey DW, Mullen RT, Lippincott-Schwartz J. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc Natl Acad Sci U S A. 2008;105(52):20567–74. doi.org/10.1073/pnas.0810611105.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350–5. doi.org/10.1126/science.aar4060.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27(4):450–61. doi.org/10.1016/j.ccell.2015.03.001.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018;8(9):1069–86. doi.org/10.1158/2159-8290.CD-18-0367.

    Article 
    PubMed 

    Google Scholar
     

  • 48.

    Li L, Zhang X, Wang X, Kim SW, Herndon JM, Becker-Hapak M, et al. Optimized polyepitope neoantigen DNA vaccines elicit neoantigen-specific immune responses in preclinical models and in clinical translation. BioProject PRJNA685845. Sequence Read Archive (SRA). www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA685845. 2020. Accessed 12 Mar 2021.

  • 49.

    Li L, Zhang X, Wang X, Kim SW, Herndon JM, Becker-Hapak M, et al. Optimized polyepitope neoantigen DNA vaccines elicit neoantigen-specific immune responses in preclinical models and in clinical translation. Study Accession phs002342.v1.p1. The database of Genotypes and Phenotypes (dbGaP). www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002342.v1.p1. 2021. Accessed 14 Mar 2021.



  • Source link