I retrieve DiffBind results as a DESeq2 object, and then look how many differentially bound regions are within it. When doing this, I get a different number of DB regions compared to the original DiffBind object.

library(DESeq2)
library(DiffBind)
data(tamoxifen_counts)
tamoxifen <- dba.contrast(tamoxifen, design="~Tissue")
tamoxifen <- dba.contrast(tamoxifen, group1=tamoxifen$masks$MCF7, group2=tamoxifen$masks$BT474, name1="MCF7", name2="BT474")
tamoxifen <- dba.analyze(tamoxifen)
dds <- dba.analyze(tamoxifen,bRetrieveAnalysis = DBA_DESEQ2)

res <- results(dds, independentFiltering=F, contrast=c("Tissue","MCF7","BT474"))

dba.show(tamoxifen,bContrasts = T,th=0.1)
summary(res)

sessionInfo( )

Output :

   Group Samples Group2 Samples2 DB.DESeq2
1  MCF7       5  BT474        2       954

out of 2845 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)       : 738, 26%
LFC < 0 (down)     : 437, 15%
outliers [1]       : 0, 0%
low counts [2]     : 0, 0%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results

R version 4.0.4 (2021-02-15)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.2 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

locale:
 [1] LC_CTYPE=en_IL.UTF-8       LC_NUMERIC=C               LC_TIME=en_IL.UTF-8       
 [4] LC_COLLATE=en_IL.UTF-8     LC_MONETARY=en_IL.UTF-8    LC_MESSAGES=en_IL.UTF-8   
 [7] LC_PAPER=en_IL.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
[10] LC_TELEPHONE=C             LC_MEASUREMENT=en_IL.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
 [1] parallel  stats4    grid      stats     graphics  grDevices utils     datasets  methods  
[10] base     

other attached packages:
 [1] DiffBind_3.0.13             rgl_0.105.13                limma_3.46.0               
 [4] DESeq2_1.30.1               SummarizedExperiment_1.20.0 Biobase_2.50.0             
 [7] MatrixGenerics_1.2.1        matrixStats_0.58.0          GenomicRanges_1.42.0       
[10] GenomeInfoDb_1.26.2         IRanges_2.24.1              S4Vectors_0.28.1           
[13] BiocGenerics_0.36.0         RColorBrewer_1.1-2          pheatmap_1.0.12            
[16] ggrepel_0.9.1               ggplot2_3.3.3              

loaded via a namespace (and not attached):
  [1] GOstats_2.56.0           backports_1.2.1          BiocFileCache_1.14.0    
  [4] plyr_1.8.6               GSEABase_1.52.1          splines_4.0.4           
  [7] BiocParallel_1.24.1      crosstalk_1.1.1          amap_0.8-18             
 [10] digest_0.6.27            invgamma_1.1             htmltools_0.5.1.1       
 [13] GO.db_3.12.1             SQUAREM_2021.1           fansi_0.4.2             
 [16] magrittr_2.0.1           checkmate_2.0.0          memoise_2.0.0           
 [19] BSgenome_1.58.0          base64url_1.4            Biostrings_2.58.0       
 [22] annotate_1.68.0          systemPipeR_1.24.3       bdsmatrix_1.3-4         
 [25] askpass_1.1              prettyunits_1.1.1        jpeg_0.1-8.1            
 [28] colorspace_2.0-0         apeglm_1.12.0            blob_1.2.1              
 [31] rappdirs_0.3.3           xfun_0.21                dplyr_1.0.4             
 [34] crayon_1.4.1             RCurl_1.98-1.2           jsonlite_1.7.2          
 [37] graph_1.68.0             genefilter_1.72.1        brew_1.0-6              
 [40] survival_3.2-7           VariantAnnotation_1.36.0 glue_1.4.2              
 [43] gtable_0.3.0             zlibbioc_1.36.0          XVector_0.30.0          
 [46] webshot_0.5.2            DelayedArray_0.16.1      V8_3.4.0                
 [49] Rgraphviz_2.34.0         scales_1.1.1             mvtnorm_1.1-1           
 [52] DBI_1.1.1                edgeR_3.32.1             miniUI_0.1.1.1          
 [55] Rcpp_1.0.6               emdbook_1.3.12           xtable_1.8-4            
 [58] progress_1.2.2           bit_4.0.4                rsvg_2.1                
 [61] truncnorm_1.0-8          AnnotationForge_1.32.0   htmlwidgets_1.5.3       
 [64] httr_1.4.2               gplots_3.1.1             ellipsis_0.3.1          
 [67] pkgconfig_2.0.3          XML_3.99-0.5             sass_0.3.1              
 [70] dbplyr_2.1.0             locfit_1.5-9.4           utf8_1.1.4              
 [73] tidyselect_1.1.0         rlang_0.4.10             manipulateWidget_0.10.1 
 [76] later_1.1.0.1            AnnotationDbi_1.52.0     munsell_0.5.0           
 [79] tools_4.0.4              cachem_1.0.4             cli_2.3.0               
 [82] generics_0.1.0           RSQLite_2.2.3            evaluate_0.14           
 [85] stringr_1.4.0            fastmap_1.1.0            yaml_2.2.1              
 [88] knitr_1.31               bit64_4.0.5              caTools_1.18.1          
 [91] purrr_0.3.4              RBGL_1.66.0              mime_0.10               
 [94] xml2_1.3.2               biomaRt_2.46.3           compiler_4.0.4          
 [97] rstudioapi_0.13          curl_4.3                 png_0.1-7               
[100] tibble_3.0.6             geneplotter_1.68.0       bslib_0.2.4             
[103] stringi_1.5.3            GenomicFeatures_1.42.1   lattice_0.20-41         
[106] Matrix_1.3-2             vctrs_0.3.6              pillar_1.5.0            
[109] lifecycle_1.0.0          jquerylib_0.1.3          irlba_2.3.3             
[112] data.table_1.14.0        bitops_1.0-6             httpuv_1.5.5            
[115] rtracklayer_1.50.0       R6_2.5.0                 latticeExtra_0.6-29     
[118] hwriter_1.3.2            promises_1.2.0.1         ShortRead_1.48.0        
[121] KernSmooth_2.23-18       MASS_7.3-53.1            gtools_3.8.2            
[124] assertthat_0.2.1         openssl_1.4.3            Category_2.56.0         
[127] rjson_0.2.20             withr_2.4.1              GenomicAlignments_1.26.0
[130] batchtools_0.9.15        Rsamtools_2.6.0          GenomeInfoDbData_1.2.4  
[133] hms_1.0.0                coda_0.19-4              DOT_0.1                 
[136] rmarkdown_2.7            GreyListChIP_1.22.0      ashr_2.2-47             
[139] mixsqp_0.3-43            bbmle_1.0.23.1           numDeriv_2016.8-1.1     
[142] shiny_1.6.0

954 != 738+437 ...

Note: crossposted at Bioconductor, but no answer received so far.



Source link