Transdermal insulin transport by electroporation was measured using porcine epidermis and fluorescein-labeled insulin. Previous studies have shown that anionic lipids can enhance the electroporative transport of molecules up to 10 kDa in size. It was also shown that it is the charge and not the type of the phospholipid head group that influences transdermal transport under electroporation. Moreover, phospholipids with saturated acyl chains enhance the transport of larger molecules more as compared to those with unsaturated chains. In the current study, based on those earlier findings, the effect of 1,2-dimyristoyl-3-phosphatidylserine (DMPS) on the transdermal transport of insulin by electroporation was examined. Porcine epidermis was used as a model for skin. Transport was measured using glass vertical diffusion apparatus in which the epidermis separated the donor and receiver compartments. Negative pulses were applied across the epidermis using platinum electrodes. Results show that when electroporation was carried out in the presence of DMPS, there was greater than 20-fold enhancement of insulin transport. Furthermore, while in the presence of the phospholipid, almost all the transported insulin was detected in the receiver compartment; in the absence of added lipids, only about half the insulin transported was in the receiver compartment and an almost equal amount of insulin remained in the epidermis. Fluorescence microscopy revealed that the insulin transport was mainly through the lipid multilayer regions that surround the corneocytes.



Source link