• 1.

    Azarin, S. M., J. Yi, R. M. Gower, B. A. Aguado, M. E. Sullivan, A. G. Goodman, E. J. Jiang, S. S. Rao, Y. Ren, S. L. Tucker, V. Backman, J. S. Jeruss, and L. D. Shea. In vivo capture and label-free detection of early metastatic cells. Nat. Commun. 6:8094, 2015.

  • 2.

    Bersani, F., J. Lee, M. Yu, R. Morris, R. Desai, S. Ramaswamy, M. Toner, D. A. Haber, and B. Parekkadan. Bioengineered implantable scaffolds as a tool to study stromal-derived factors in metastatic cancer models. Cancer Res. 74:7229–7238, 2014.

  • 3.

    Chu, K. F., and D. E. Dupuy. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat. Rev. Cancer 14:199–208, 2014.

  • 4.

    Davalos, R. V., L. M. Mir, and B. Rubinsky. Tissue ablation with irreversible electroporation. Ann. Biomed. Eng. 33:223–231, 2005.

  • 5.

    de la Fuente, A., L. Alonso-Alconada, C. Costa, J. Cueva, T. Garcia-Caballero, R. Lopez-Lopez, and M. Abal. M-Trap: exosome-based capture of tumor cells as a new technology in peritoneal metastasis. J. Natl. Cancer Inst. 107:djv184, 2015.

  • 6.

    Faes, T. J. C., H. A. van der Meij, J. C. de Munck, and R. M. Heethaar. The electric resistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review studies. Physiol. Meas. 20:R1–R10, 1999.

  • 7.

    Fernández-Periáñez, R., I. Molina-Privado, F. Rojo, I. Guijarro-Muñoz, V. Alonso-Camino, S. Zazo, M. Compte, A. Álvarez-Cienfuegos, A. M. Cuesta, D. Sánchez-Martín, A. M. Álvarez-Méndez, L. Sanz, and L. Álvarez-Vallina. Basement membrane-rich organoids with functional human blood vessels are permissive niches for human breast cancer metastasis. PLoS ONE 8:e72957, 2013.

  • 8.

    Fujino, T., Y. Yokoyama, and Y. H. Mori. Augmentation of laminar forced-convective heat transfer by the application of a transverse electric field. J. Heat Transfer 111:345, 1989.

  • 9.

    Goswami, I., S. Coutermarsh-Ott, R. G. Morrison, I. C. Allen, R. V. Davalos, S. S. Verbridge, and L. R. Bickford. Irreversible electroporation inhibits pro-cancer inflammatory signaling in triple negative breast cancer cells. Bioelectrochemistry 113:42–50, 2017.

  • 10.

    He, C., J. Wang, S. Sun, Y. Zhang, and S. Li. Immunomodulatory effect after irreversible electroporation in patients with locally advanced pancreatic cancer. J. Oncol. 2019. doi.org/10.1155/2019/9346017.

  • 11.

    Jiang, C., R. V. Davalos, and J. C. Bischof. A review of basic to clinical studies of irreversible electroporation therapy. IEEE Trans. Biomed. Eng. 62:4–20, 2015.

  • 12.

    Jiang, C., Q. Shao, and J. Bischof. Pulse timing during irreversible electroporation achieves enhanced destruction in a hindlimb model of cancer. Ann. Biomed. Eng. 43:887–895, 2015.

  • 13.

    Kandušer, M., M. Šentjurc, and D. Miklavčič. Cell membrane fluidity related to electroporation and resealing. Eur. Biophys. J. 35:196–204, 2006.

  • 14.

    Ko, C.-Y., L. Wu, A. M. Nair, Y.-T. Tsai, V. K. Lin, and L. Tang. The use of chemokine-releasing tissue engineering scaffolds in a model of inflammatory response-mediated melanoma cancer metastasis. Biomaterials 33:876–885, 2012.

  • 15.

    Miklavčič, D., N. Pavšelj, and F. X. Hart. Electric properties of tissues. In: Wiley Encyclopedia of Biomedical Engineering, edited by M. Akay. New York: Wiley, 2006.

  • 16.

    Moreau, J. E., K. Anderson, J. R. Mauney, T. Nguyen, D. L. Kaplan, and M. Rosenblatt. Tissue-engineered bone serves as a target for metastasis of human breast cancer in a mouse model. Cancer Res. 67:10304–10308, 2007.

  • 17.

    Narayanan, J. S. S., P. Ray, T. Hayashi, T. C. Whisenant, D. Vicente, D. A. Carson, A. M. Miller, S. P. Schoenberger, and R. R. White. Irreversible electroporation combined with checkpoint blockade and TLR7 stimulation induces antitumor immunity in a murine pancreatic cancer model. Cancer Immunol. Res. 7:1714–1726, 2019.

  • 18.

    Neal, R. E., J. H. Rossmeisl, J. L. Robertson, C. B. Arena, E. M. Davis, R. N. Singh, J. Stallings, and R. V. Davalos. Improved local and systemic anti-tumor efficacy for irreversible electroporation in immunocompetent versus immunodeficient mice. PLoS ONE 8:e64559, 2013.

  • 19.

    Pelaez, F., N. Manuchehrabadi, P. Roy, H. Natesan, Y. Wang, E. Racila, H. Fong, K. Zeng, A. M. Silbaugh, J. C. Bischof, and S. M. Azarin. Biomaterial scaffolds for non-invasive focal hyperthermia as a potential tool to ablate metastatic cancer cells. Biomaterials 166:27–37, 2018.

  • 20.

    Poste, G., J. Doll, I. R. Hart, and I. J. Fidler. In vitro selection of murine B16 melanoma variants with enhanced tissue-invasive properties. Cancer Res. 40:1636–1644, 1980.

  • 21.

    Rao, S. S., G. G. Bushnell, S. M. Azarin, G. Spicer, B. A. Aguado, J. R. Stoehr, E. J. Jiang, V. Backman, L. D. Shea, and J. S. Jeruss. Enhanced survival with implantable scaffolds that capture metastatic breast cancer cells in vivo. Cancer Res. 76:5209–5218, 2016.

  • 22.

    Ringel-Scaia, V. M., N. Beitel-White, M. F. Lorenzo, R. M. Brock, K. E. Huie, S. Coutermarsh-Ott, K. Eden, D. K. McDaniel, S. S. Verbridge, J. H. Rossmeisl, K. J. Oestreich, R. V. Davalos, and I. C. Allen. High-frequency irreversible electroporation is an effective tumor ablation strategy that induces immunologic cell death and promotes systemic anti-tumor immunity. EBioMedicine 44:112–125, 2019.

  • 23.

    Rossmeisl, J. H., P. A. Garcia, T. E. Pancotto, J. L. Robertson, N. Henao-Guerrero, R. E. Neal, T. L. Ellis, and R. V. Davalos. Safety and feasibility of the NanoKnife system for irreversible electroporation ablative treatment of canine spontaneous intracranial gliomas. J. Neurosurg. 123:1008–1025, 2015.

  • 24.

    Rubinsky, B., G. Onik, and P. Mikus. Irreversible electroporation: a new ablation modality—clinical implications. Technol. Cancer Res. Treat. 6:37–48, 2007.

  • 25.

    Sapareto, S. A., and W. C. Dewey. Thermal dose determination in cancer therapy. Int. J. Radiat. Oncol. 10:787–800, 1984.

  • 26.

    Scheffer, H. J., A. G. M. Stam, B. Geboers, L. G. P. H. Vroomen, A. Ruarus, B. de Bruijn, M. P. van den Tol, G. Kazemier, M. R. de Meijerink, and T. D. de Gruijl. Irreversible electroporation of locally advanced pancreatic cancer transiently alleviates immune suppression and creates a window for antitumor T cell activation. Oncoimmunology 2019. doi.org/10.1080/2162402X.2019.1652532.

  • 27.

    Shao, Q., F. Liu, C. Chung, K. Elahi-Gedwillo, P. P. Provenzano, B. Forsyth, and J. C. Bischof. Physical and chemical enhancement of and adaptive resistance to irreversible electroporation of pancreatic cancer. Ann. Biomed. Eng. 46:25–36, 2018.

  • 28.

    Shao, Q., S. O’Flanagan, T. Lam, P. Roy, F. Pelaez, B. J. Burbach, S. M. Azarin, Y. Shimizu, and J. C. Bischof. Engineering T cell response to cancer antigens by choice of focal therapeutic conditions. Int. J. Hyperth. 36:130–138, 2019.

  • 29.

    Stam, A. G. M., and T. D. de Gruijl. From local to systemic treatment: leveraging antitumor immunity following irreversible electroporation. In: Irreversible Electroporation in Clinical Practice, edited by M. R. Meijerink, H. J. Scheffer, and G. Narayanan. Cham: Springer International Publishing, 2018, pp. 249–270.

  • 30.

    Thibaudeau, L., A. V. Taubenberger, B. M. Holzapfel, V. M. Quent, T. Fuehrmann, P. Hesami, T. D. Brown, P. D. Dalton, C. A. Power, B. G. Hollier, and D. W. Hutmacher. A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone. Dis. Model. Mech. 7:299–309, 2014.

  • 31.

    Xu, L., and A. Yamamoto. Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating. Colloids Surf. B Biointerfaces 93:67–74, 2012.

  • 32.

    Yarmush, M. L., A. Golberg, G. Serša, T. Kotnik, and D. Miklavčič. Electroporation-based technologies for medicine: principles, applications, and challenges. Annu. Rev. Biomed. Eng. 16:295–320, 2014.

  • 33.

    Zhao, J., X. Wen, L. Tian, T. Li, C. Xu, X. Wen, M. P. Melancon, S. Gupta, B. Shen, W. Peng, and C. Li. Irreversible electroporation reverses resistance to immune checkpoint blockade in pancreatic cancer. Nat. Commun. 10:899, 2019.



  • Source link