• Abkowitz JL, Persik MT, Shelton GH, Ott RL, Kiklevich JV, Catlin SN, Guttorp P (1995) Behavior of hematopoietic stem cells in a large animal. Proc Natl Acad Sci U S A 92:2031–2035

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson KR, Haeussler M, Watanabe C, Janakiraman V, Lund J, Modrusan Z, Stinson J, Bei Q, Buechler A, Yu C, Thamminana SR, Tam L, Sowick MA, Alcantar T, O'Neil N, Li J, Ta L, Lima L, Roose-Girma M, Rairdan X, Durinck S, Warming S (2018) CRISPR off-target analysis in genetically engineered rats and mice. Nat Methods 15:512–514

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brinkman EK, Chen T, Amendola M, van Steensel B (2014) Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 42:e168

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao J, Wu L, Zhang S-M, Lu M, Cheung WK, Cai W, Gale M, Xu Q, Yan Q (2016) An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting. Nucleic Acids Res 44:e149–e149

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S, Lee B, Lee AY, Modzelewski AJ, He L (2016) Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J Biol Chem 291:14457–14467

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chou C-J, Peng S-Y, Wu M-H, Yang C-C, Lin Y-S, Cheng WT-K, Wu S-C, Lin Y-P (2014) Generation and characterization of a transgenic pig carrying a DsRed-monomer reporter gene. PLoS One 9:e106864

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colucci F, Soudais C, Rosmaraki E, Vanes L, Tybulewicz VL, Di Santo JP (1999) Dissecting NK cell development using a novel alymphoid mouse model: investigating the role of the c-abl proto-oncogene in murine NK cell differentiation. J Immunol 162:2761–2765

    CAS 
    PubMed 

    Google Scholar
     

  • Cradick TJ, Qiu P, Lee CM, Fine EJ, Bao G (2014) COSMID: A Web-based tool for identifying and validating CRISPR/Cas Off-target sites. Mol Ther Nucleic Acids 3:e214

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE (2014) Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nat Biotechnol 32:1262–1267

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirata M, Tanihara F, Wittayarat M, Hirano T, Nguyen NT, Le QA, Namula Z, Nii M, Otoi T (2019a) Genome mutation after introduction of the gene editing by electroporation of Cas9 protein (GEEP) system in matured oocytes and putative zygotes. In Vitro Cell Dev Biol Anim 55:237–242

    CAS 
    PubMed 

    Google Scholar
     

  • Hirata M, Wittayarat M, Hirano T, Nguyen NT, Le QA, Namula Z, Fahrudin M, Tanihara F, Otoi T (2019b) The relationship between embryonic development and the efficiency of target mutations in porcine endogenous retroviruses (PERVs) pol genes in porcine embryos. Animals 9:593


    Google Scholar
     

  • Hirata M, Wittayarat M, Namula Z, Le QA, Lin Q, Nguyen NT, Takebayashi K, Sato Y, Tanihara F, Otoi T (2020) Evaluation of multiple gene targeting in porcine embryos by the CRISPR/Cas9 system using electroporation. Mol Biol Rep 47:5073–5079

    CAS 
    PubMed 

    Google Scholar
     

  • Iqbal K, Barg-Kues B, Broll S, Bode J, Niemann H, Kues WA (2009) Cytoplasmic injection of circular plasmids allows targeted expression in mammalian embryos. Biotechniques 47:959–968

    PubMed 

    Google Scholar
     

  • Ivics Z, Garrels W, Mátés L, Yau TY, Bashir S, Zidek V, Landa V, Geurts A, Pravenec M, Rülicke T (2014) Germline transgenesis in pigs by cytoplasmic microinjection of Sleeping Beauty transposons. Nat Protoc 9:810–827

    CAS 
    PubMed 

    Google Scholar
     

  • Kang J-T, Cho B, Ryu J, Ray C, Lee E-J, Yun Y-J, Ahn S, Lee J, Ji D-Y, Jue N (2016) Biallelic modification of IL2RG leads to severe combined immunodeficiency in pigs. Reprod Biol Endocrinol 14:74

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36:765–771

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei S, Ryu J, Wen K, Twitchell E, Bui T, Ramesh A, Weiss M, Li G, Samuel H, Clark-Deener S (2016) Increased and prolonged human norovirus infection in RAG2/IL2RG deficient gnotobiotic pigs with severe combined immunodeficiency. Sci Rep 6:25222

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu X, Homma A, Sayadi J, Yang S, Ohashi J, Takumi T (2016) Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system. Sci Rep 6:1–9


    Google Scholar
     

  • Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V (2012) The pig: a model for human infectious diseases. Trends Microbiol 20:50–57

    CAS 
    PubMed 

    Google Scholar
     

  • Minkenberg B, Wheatley M, Yang Y (2017) CRISPR/Cas9-enabled multiplex genome editing and its application. Prog Mol Biol Transl Sci 149:111–132

    CAS 
    PubMed 

    Google Scholar
     

  • Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31:1120–1123

    CAS 
    PubMed 

    Google Scholar
     

  • Nakagawa Y, Sakuma T, Takeo T, Nakagata N, Yamamoto T (2018) Electroporation-mediated genome editing in vitrified/warmed mouse zygotes created by IVF via ultra-superovulation. Exp Anim 67:535–543

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen TV, Tanihara F, Do L, Sato Y, Taniguchi M, Takagi M, Van Nguyen T, Otoi T (2017) Chlorogenic acid supplementation during in vitro maturation improves maturation, fertilization and developmental competence of porcine oocytes. Reprod Domest Anim 52:969–975

    CAS 
    PubMed 

    Google Scholar
     

  • Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156:836–843

    CAS 
    PubMed 

    Google Scholar
     

  • O’Meara CM, Murray JD, Mamo S, Gallagher E, Roche J, Lonergan P (2011) Gene silencing in bovine zygotes: siRNA transfection versus microinjection. Reprod Fertil Dev 23:534–543

    PubMed 

    Google Scholar
     

  • Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren X, Yang Z, Xu J, Sun J, Mao D, Hu Y, Yang S-J, Qiao H-H, Wang X, Hu Q (2014) Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep 9:1151–1162

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandoval IM, Collier TJ, Manfredsson FP (2019) Design and assembly of CRISPR/Cas9 lentiviral and rAAV vectors for targeted genome editing. Viral Vectors Gene Ther 1937:29–45

    CAS 

    Google Scholar
     

  • Sekine R, Kawata T, Muramoto T (2018) CRISPR/Cas9 mediated targeting of multiple genes in Dictyostelium. Sci Rep 8:1–11


    Google Scholar
     

  • Staunstrup NH, Madsen J, Primo MN, Li J, Liu Y, Kragh PM, Li R, Schmidt M, Purup S, Dagnæs-Hansen F (2012) Development of transgenic cloned pig models of skin inflammation by DNA transposon-directed ectopic expression of human β1 and α2 integrin. PLoS One 7:e36658

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suzuki S, Iwamoto M, Saito Y, Fuchimoto D, Sembon S, Suzuki M, Mikawa S, Hashimoto M, Aoki Y, Najima Y (2012) Il2rg gene-targeted severe combined immunodeficiency pigs. Cell Stem Cell 10:753–758

    CAS 
    PubMed 

    Google Scholar
     

  • Tanihara F, Hirata M, Nguyen NT, Le QA, Hirano T, Takemoto T, Nakai M, D-i F, Otoi T (2018) Generation of a TP53-modified porcine cancer model by CRISPR/Cas9-mediated gene modification in porcine zygotes via electroporation. PLoS One 13:e0206360

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanihara F, Hirata M, Nguyen NT, Le QA, Hirano T, Takemoto T, Nakai M, Di F, Otoi T (2019) Generation of PDX-1 mutant porcine blastocysts by introducing CRISPR/Cas9-system into porcine zygotes via electroporation. Anim Sci J 90:55–61

    CAS 
    PubMed 

    Google Scholar
     

  • Tanihara F, Takemoto T, Kitagawa E, Rao S, Do LT, Onishi A, Yamashita Y, Kosugi C, Suzuki H, Sembon S, Suzuki S, Nakai M, Hashimoto M, Yasue A, Matsuhisa M, Noji S, Fujimura T, Fuchimoto D, Otoi T (2016) Somatic cell reprogramming-free generation of genetically modified pigs. Sci Adv 2:e1600803

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505:344–352

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Umeyama K, Saito H, Kurome M, Matsunari H, Watanabe M, Nakauchi H, Nagashima H (2012) Characterization of the ICSI-mediated gene transfer method in the production of transgenic pigs. Mol Reprod Dev 79:218–228

    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watanabe M, Nakano K, Matsunari H, Matsuda T, Maehara M, Kanai T, Kobayashi M, Matsumura Y, Sakai R, Kuramoto M (2013) Generation of interleukin-2 receptor gamma gene knockout pigs from somatic cells genetically modified by zinc finger nuclease-encoding mRNA. PLoS One 8:e76478

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolf E, Schernthaner W, Zakhartchenko V, Prelle K, Stojkovic M, Brem G (2000) Transgenic technology in farm animals-progress and perspectives. Exp Physiol 85:615–625

    CAS 
    PubMed 

    Google Scholar
     

  • Wu Z, Xu Z, Zou X, Zeng F, Shi J, Liu D, Urschitz J, Moisyadi S, Li Z (2013) Pig transgenesis by piggyBac transposition in combination with somatic cell nuclear transfer. Transgenic Res 22:1107–1118

    CAS 
    PubMed 

    Google Scholar
     

  • Yu H, Long W, Zhang X, Xu K, Guo J, Zhao H, Li H, Qing Y, Pan W, Jia B (2018) Generation of GHR-modified pigs as Laron syndrome models via a dual-sgRNAs/Cas9 system and somatic cell nuclear transfer. J Transl Med 16:41

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou X, Xin J, Fan N, Zou Q, Huang J, Ouyang Z, Zhao Y, Zhao B, Liu Z, Lai S (2015) Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci 72:1175–1184

    CAS 
    PubMed 

    Google Scholar
     



  • Source link