• 1.

    Balaban, E. P. et al. Locally advanced, unresectable pancreatic cancer: american society of clinical oncology clinical practice guideline. J. Clin. Oncol. 34, 2654–2668 (2016).

    PubMed 

    Google Scholar
     

  • 2.

    He, C. et al. Immunomodulatory effect after irreversible electroporation in patients with locally advanced pancreatic cancer. J. Oncol. 2019, 9346017 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Ruarus, A. H. et al. Percutaneous irreversible electroporation in locally advanced and recurrent pancreatic cancer (PANFIRE-2): a multicenter, prospective, single-arm, phase II study. Radiology 294, 212–220 (2020).

    PubMed 

    Google Scholar
     

  • 4.

    Narayanan, J. S. S. et al. Irreversible electroporation combined with checkpoint blockade and TLR7 stimulation induces antitumor immunity in a murine pancreatic cancer model. Cancer Immunol. Res. 7, 1714–1726 (2019).

    PubMed 

    Google Scholar
     

  • 5.

    Zhao, J. et al. Irreversible electroporation reverses resistance to immune checkpoint blockade in pancreatic cancer. Nat. Commun. 10, 899 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Clark, C. E. et al. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res. 67, 9518–9527 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Feig, C. et al. The pancreas cancer microenvironment. Clin. Cancer Res. 18, 4266–4276 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Martinez-Bosch, N., Vinaixa, J. & Navarro, P. Immune evasion in pancreatic cancer: from mechanisms to therapy. Cancers 10, 6 (2018).

    PubMed Central 

    Google Scholar
     

  • 9.

    Martin, R. C.II., McFarland, K., Ellis, S. & Velanovich, V. Irreversible electroporation in locally advanced pancreatic cancer: potential improved overall survival. Ann. Surg. Oncol. 20 (Suppl 3), S443–449 (2013).

    PubMed 

    Google Scholar
     

  • 10.

    Varshney, S. et al. Radiofrequency ablation of unresectable pancreatic carcinoma: feasibility, efficacy and safety. JOP 7, 74–78 (2006).

    PubMed 

    Google Scholar
     

  • 11.

    Moir, J. et al. Systematic review of irreversible electroporation in the treatment of advanced pancreatic cancer. Eur. J. Surg. Oncol. 40, 1598–1604 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Martin, R. C. II et al. Treatment of 200 locally advanced (stage III) pancreatic adenocarcinoma patients with irreversible electroporation: safety and efficacy. Ann. Surg. 262, 486–494 (2015). discussion 492-484.

    PubMed 

    Google Scholar
     

  • 13.

    Rubinsky, B., Onik, G. & Mikus, P. Irreversible electroporation: a new ablation modality–clinical implications. Technol. Cancer Res. Treat. 6, 37–48 (2007).

    PubMed 

    Google Scholar
     

  • 14.

    Lin, M. et al. Percutaneous irreversible electroporation combined with allogeneic natural killer cell immunotherapy for patients with unresectable (stage III/IV) pancreatic cancer: a promising treatment. J. Cancer Res. Clin. Oncol. 143, 2607–2618 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Lin, M. et al. Short-term clinical efficacy of percutaneous irreversible electroporation combined with allogeneic natural killer cell for treating metastatic pancreatic cancer. Immunol. Lett. 186, 20–27 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Scheffer, H. J. et al. Ablation of locally advanced pancreatic cancer with percutaneous irreversible electroporation: results of the phase I/II PANFIRE study. Radiology 282, 585–597 (2017).

    PubMed 

    Google Scholar
     

  • 17.

    Bhutiani, N. et al. Irreversible electroporation enhances delivery of gemcitabine to pancreatic adenocarcinoma. J. Surg. Oncol. 114, 181–186 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Bulvik, B. E. et al. Irreversible electroporation versus radiofrequency ablation: a comparison of local and systemic effects in a small-animal model. Radiology 280, 413–424 (2016).

    PubMed 

    Google Scholar
     

  • 19.

    Scheffer, H. J. et al. Irreversible electroporation of locally advanced pancreatic cancer transiently alleviates immune suppression and creates a window for antitumor T cell activation. Oncoimmunology 8, 1652532 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Hu, Y. et al. Selenium nanoparticles as new strategy to potentiate gammadelta T cell anti-tumor cytotoxicity through upregulation of tubulin-alpha acetylation. Biomaterials 222, 119397 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Neelapu, S. S. et al. Chimeric antigen receptor T-cell therapy—assessment and management of toxicities. Nat. Rev. Clin. Oncol. 15, 47–62 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Silva-Santos, B., Mensurado, S. & Coffelt, S. B. Gammadelta T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nat. Rev. Cancer 19, 392–404 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Zajdel, A., Kalucka, M., Chodurek, E. & Wilczok, A. DHA but not AA enhances cisplatin cytotoxicity in ovarian cancer cells. Nutr. Cancer 70, 1118–1125 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Dudley, M. E. et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol. 23, 2346–2357 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Bouet-Toussaint, F. et al. Vgamma9Vdelta2 T cell-mediated recognition of human solid tumors. Potential for immunotherapy of hepatocellular and colorectal carcinomas. Cancer Immunol. Immunother. 57, 531–539 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Dieli, F. et al. Targeting human {gamma}delta} T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res. 67, 7450–7457 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Meraviglia, S. et al. In vivo manipulation of Vgamma9Vdelta2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients. Clin. Exp. Immunol. 161, 290–297 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Alnaggar, M. et al. Allogenic vgamma9vdelta2 T cell as new potential immunotherapy drug for solid tumor: a case study for cholangiocarcinoma. J. Immunother. Cancer 7, 36 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Xiang, Z. & Tu, W. Dual face of vgamma9vdelta2-T cells in tumor immunology: anti- versus pro-tumoral activities. Front. Immunol. 8, 1041 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Lin, M. et al. Pembrolizumab plus allogeneic NK cells in advanced non-small cell lung cancer patients. J. Clin. Investig. 130, 2560–2569 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Okazaki, T. et al. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat. Immunol. 14, 1212–1218 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Mansson, C. et al. Percutaneous irreversible electroporation for treatment of locally advanced pancreatic cancer following chemotherapy or radiochemotherapy. Eur. J. Surg. Oncol. 42, 1401–1406 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Narayanan, G. et al. Percutaneous image-guided irreversible electroporation for the treatment of unresectable, locally advanced pancreatic adenocarcinoma. J. Vasc. Interv. Radiol. 28, 342–348 (2017).

    PubMed 

    Google Scholar
     

  • 34.

    Brudno, J. N. & Kochenderfer, J. N. Chimeric antigen receptor T-cell therapies for lymphoma. Nat. Rev. Clin. Oncol. 15, 31–46 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Thind, K., Padrnos, L. J., Ramanathan, R. K. & Borad, M. J. Immunotherapy in pancreatic cancer treatment: a new frontier. Ther. Adv. Gastroenterol. 10, 168–194 (2017).

    CAS 

    Google Scholar
     

  • 36.

    Yang, Y. et al. Safety and short-term efficacy of irreversible electroporation and allogenic natural killer cell immunotherapy combination in the treatment of patients with unresectable primary liver cancer. Cardiovasc. Interv. Radiol. 42, 48–59 (2019).


    Google Scholar
     

  • 37.

    Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8, 1069–1086 (2018).

    PubMed 

    Google Scholar
     

  • 39.

    Willcox, B. E. & Willcox, C. R. Gammadelta TCR ligands: the quest to solve a 500-million-year-old mystery. Nat. Immunol. 20, 121–128 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Geller, M. A. & Miller, J. S. Use of allogeneic NK cells for cancer immunotherapy. Immunotherapy 3, 1445–1459 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Field, W., Rostas, J. W. & Martin, R. C. G. Quality of life assessment for patients undergoing irreversible electroporation (IRE) for treatment of locally advanced pancreatic cancer (LAPC). Am. J. Surg. 218, 571–578 (2019).

    PubMed 

    Google Scholar
     

  • 42.

    Rossi, C. et al. Boosting gammadelta T cell-mediated antibody-dependent cellular cytotoxicity by PD-1 blockade in follicular lymphoma. Oncoimmunology 8, 1554175 (2019).

    PubMed 

    Google Scholar
     

  • 43.

    Benyamine, A. et al. BTN3A is a prognosis marker and a promising target for Vgamma9Vdelta2 T cells based-immunotherapy in pancreatic ductal adenocarcinoma (PDAC). Oncoimmunology 7, e1372080 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Chauvin, C. et al. NKG2D controls natural reactivity of vgamma9vdelta2 T lymphocytes against mesenchymal glioblastoma cells. Clin. Cancer Res. 25, 7218–7228 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Capietto, A. H., Martinet, L. & Fournie, J. J. Stimulated gammadelta T cells increase the in vivo efficacy of trastuzumab in HER-2+ breast cancer. J. Immunol. 187, 1031–1038 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Zeng, J. et al. The safety and efficacy of irreversible electroporation for large hepatocellular carcinoma. Technol. Cancer Res. Treat. 16, 120–124 (2017).

    PubMed 

    Google Scholar
     



  • Source link