• 1.

    Arena, C. B., et al. A three-dimensional in vitro tumor platform for modeling therapeutic irreversible electroporation. Biophys. J. 103(9):2033–2042, 2012.

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Cheung, W., et al. Irreversible electroporation for unresectable hepatocellular carcinoma: initial experience and review of safety and outcomes. Technol. Cancer Res. Treat. 12(3):233–241, 2013.

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Chiang, J., et al. Effects of microwave ablation on arterial and venous vasculature after treatment of hepatocellular carcinoma. Radiology 281(2):617–624, 2016.

    Article 

    Google Scholar
     

  • 4.

    Deng, J., et al. The effects of intense submicrosecond electrical pulses on cells. Biophys. J. 84(4):2709–2714, 2003.

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Ding, L., et al. Treatment planning optimization in irreversible electroporation for complete ablation of variously sized cervical tumors: a numerical study. J. Biomech. Eng. 143(1):014503, 2020.

    Article 

    Google Scholar
     

  • 6.

    Dong, S., et al. First human trial of high-frequency irreversible electroporation therapy for prostate cancer. Technol. Cancer Res. Treat. 17:1533033818789692, 2018.

    Article 

    Google Scholar
     

  • 7.

    Edelblute, C. M., et al. Controllable moderate heating enhances the therapeutic efficacy of irreversible electroporation for pancreatic cancer. Sci. Rep. 7(1):1–11, 2017.

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Engineering ToolBox. Specific Heat of Some Metals 2003. www.engineeringtoolbox.com/specific-heat-metals-d_152.html. Accessed 20 May 2020.

  • 9.

    Falk, H., et al. Calcium electroporation for treatment of cutaneous metastases; a randomized double-blinded phase II study, comparing the effect of calcium electroporation with electrochemotherapy. Acta Oncol. 57(3):311–319, 2018.

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Fesmire, C. C., et al. Temperature dependence of high frequency irreversible electroporation evaluated in a 3D tumor model. Ann. Biomed. Eng. 48(8):2233–2246, 2020.

    Article 

    Google Scholar
     

  • 11.

    Garner, A. L., et al. Cell membrane thermal gradients induced by electromagnetic fields. J. Appl. Phys. 113(21):214701, 2013.

    Article 

    Google Scholar
     

  • 12.

    Glaser, R. W., et al. Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. BBA Biomembr. 940(2):275–287, 1988.

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Golberg, A., et al. Tissue heterogeneity in structure and conductivity contribute to cell survival during irreversible electroporation ablation by “electric field sinks.” Sci. Rep. 5:8485, 2015.

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Huang, H. W. Influence of blood vessel on the thermal lesion formation during radiofrequency ablation for liver tumors. Med. Phys. 40(7):073303, 2013.

    Article 

    Google Scholar
     

  • 15.

    Ivey, J. W., et al. Enhancing irreversible electroporation by manipulating cellular biophysics with a molecular adjuvant. Biophys. J. 113(2):472–480, 2017.

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Jiang, C., Z. Qin, and J. Bischof. Membrane-targeting approaches for enhanced cancer cell destruction with irreversible electroporation. Ann. Biomed. Eng. 42(1):193–204, 2014.

    Article 

    Google Scholar
     

  • 17.

    Lee, E. S., et al. Multiple-electrode radiofrequency ablations using Octopus® electrodes in an in vivo porcine liver model. Br. J. Radiol. 85(1017):e609–e615, 2012.

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Lula, R. A. Stainless Steel. Metals Park, OH: ASM, 1985.


    Google Scholar
     

  • 19.

    Lv, Y., C. Yao, and B. Rubinsky. A conceivable mechanism responsible for the synergy of high and low voltage irreversible electroporation pulses. Ann. Biomed. Eng. 47(7):1552–1563, 2019.

    Article 

    Google Scholar
     

  • 20.

    Mercadal, B., et al. Dynamics of cell death after conventional IRE and H-FIRE treatments. Ann. Biomed. Eng. 48(5):1–12, 2020.

    Article 

    Google Scholar
     

  • 21.

    Mossop, B. J., et al. Electric fields around and within single cells during electroporation—a model study. Ann. Biomed. Eng. 35(7):1264–1275, 2007.

    Article 

    Google Scholar
     

  • 22.

    Novickij, V., et al. High frequency electroporation efficiency is under control of membrane capacitive charging and voltage potential relaxation. Bioelectrochemistry 119:92–97, 2018.

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Sano, M. B., O. Volotskova, and L. Xing. Treatment of cancer in vitro using radiation and high-frequency bursts of submicrosecond electrical pulses. IEEE Trans. Biomed. Eng. 65(4):928–935, 2017.

    Article 

    Google Scholar
     

  • 24.

    Sengel, J. T., and M. I. Wallace. Measuring the potential energy barrier to lipid bilayer electroporation. Philos. Trans. R. Soc. B 372(1726):20160227, 2017.

    Article 

    Google Scholar
     

  • 25.

    Serway, R. A., and J. W. Jewett. Principles of Physics, Vol. 1, Fort Worth, TX: Saunders College Publishers, 1998.


    Google Scholar
     

  • 26.

    Shao, Q., et al. Physical and chemical enhancement of and adaptive resistance to irreversible electroporation of pancreatic cancer. Ann. Biomed. Eng. 46(1):25–36, 2018.

    Article 

    Google Scholar
     

  • 27.

    Sukhatme, S. P. A Textbook on Heat Transfer. Hyderabad: Universities Press, 2005.


    Google Scholar
     

  • 28.

    Sutter, O., et al. Safety and efficacy of irreversible electroporation for the treatment of hepatocellular carcinoma not amenable to thermal ablation techniques: a retrospective single-center case series. Radiology 284(3):877–886, 2017.

    Article 

    Google Scholar
     

  • 29.

    Tian, L., et al. Antitumor efficacy of liposome-encapsulated NVP-BEZ 235 in combination with irreversible electroporation. Drug Deliv. 25(1):668–678, 2018.

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Wagstaff, P. G., et al. Irreversible electroporation: state of the art. OncoTargets Ther. 9:2437, 2016.

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Wu, L.-M., et al. Is irreversible electroporation safe and effective in the treatment of hepatobiliary and pancreatic cancers? Hepatobiliary Pancreat. Dis. 18(2):117–124, 2019.

    Article 

    Google Scholar
     

  • 32.

    Yang, Y., et al. Optimization of electrode configuration and pulse strength in irreversible electroporation for large ablation volumes without thermal damage. J .Eng. Sci. Med. Diagn. Ther. 1(2):021002, 2018.

    Article 

    Google Scholar
     

  • 33.

    Yang, Y., et al. Development of a statistical model for cervical cancer cell death with irreversible electroporation in vitro. PLoS ONE 13(4):e0195561, 2018.

    Article 

    Google Scholar
     

  • 34.

    Yao, C., et al. Bipolar microsecond pulses and insulated needle electrodes for reducing muscle contractions during irreversible electroporation. IEEE Trans. Biomed. Eng. 64(12):2924–2937, 2017.

    Article 

    Google Scholar
     

  • 35.

    Zhang, B., et al. A review of radiofrequency ablation: large target tissue necrosis and mathematical modelling. Phys. Med. 32(8):961–971, 2016.

    Article 

    Google Scholar
     

  • 36.

    Zhang, B., et al. Tumor ablation enhancement by combining radiofrequency ablation and irreversible electroporation: an in vitro 3D tumor study. Ann. Biomed. Eng. 47(3):694–705, 2019.

    Article 

    Google Scholar
     



  • Source link