• Abidor IG, Arakelyan VB, Chernomordik LV, Chizmadzhev YA, Pastushenko VF, Tarasevich MR (1979) Electric breakdown of bilayer lipid membranes: I. The main experimental facts and their qualitative discussion. J Electroanal Chem Interfacial Electrochem 104:37–52. doi.org/10.1016/S0022-0728(79)81006-2

    Article 

    Google Scholar
     

  • Ahamed MK, Karal MAS, Ahmed M, Ahammed S (2020) Kinetics of irreversible pore formation under constant electrical tension in giant unilamellar vesicles. Eur Biophys J. doi.org/10.1007/s00249-020-01440-1

    Article 
    PubMed 

    Google Scholar
     

  • Akimov SA, Volynsky PE, Galimzyanov TR, Kuzmin PI, Pavlov KV, Batishchev OV (2017) Pore formation in lipid membrane II: energy landscape under external stress. Sci Rep 7:12509. doi.org/10.1038/s41598-017-12749-x

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alam JM, Kobayashi T, Yamazaki M (2012) The single-giant unilamellar vesicle method reveals lysenin-induced pore formation in lipid membranes containing sphingomyelin. Biochemistry 51:5160–5172. doi.org/10.1021/bi300448g

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65:36–48. doi.org/10.1016/j.addr.2012.09.037

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Al-Sakere B, André F, Bernat C, Connault E, Opolon P, Davalos RV, Rubinsky B, Mir LM (2007) Tumor ablation with irreversible electroporation. PLoS ONE 2:e1135. doi.org/10.1371/journal.pone.0001135

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alwarawrah M, Dai J, Huang J (2010) A molecular view of the cholesterol condensing effect in DOPC lipid bilayers. J Phys Chem B 114:7516–7523. doi.org/10.1021/jp101415g

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armstrong CL, Marquardt D, Dies H, Kučerka N, Yamani Z, Harroun TA, Katsaras J, Shi A-C, Rheinstädter MC (2013) The observation of highly ordered domains in membranes with cholesterol. PLoS ONE 8:e66162. doi.org/10.1371/journal.pone.0066162

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bardania H, Tarvirdipour S, Dorkoosh F (2017) Liposome-targeted delivery for highly potent drugs. Artif Cells Nanomed Biotechnol 45:1478–1489. doi.org/10.1080/21691401.2017.1290647

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Blosser MC, Horst BG, Keller SL (2016) cDICE method produces giant lipid vesicles under physiological conditions of charged lipids and ionic solutions. Soft Matter 12:7364–7371. doi.org/10.1039/c6sm00868b

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Böckmann RA, de Groot BL, Kakorin S, Neumann E, Grubmuller H (2008) Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys J 95:1837–1850. doi.org/10.1529/biophysj.108.129437

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Casciola M, Bonhenry D, Liberti M, Apollonio F, Tarek M (2014) A molecular dynamic study of cholesterol rich lipid membranes: comparison of electroporation protocols. Bioelectrochemistry 100:11–17. doi.org/10.1016/j.bioelechem.2014.03.009

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Coderch L, Fonollosa J, De Pera M, Estelrich J, De La Maza A, Parra JL (2000) Influence of cholesterol on liposome fluidity by EPR. Relationship with percutaneous absorption. J Control Release 68:85–95

    CAS 
    Article 

    Google Scholar
     

  • Cunill-Semanat E, Salgado J (2019) Spontaneous and stress-induced pore formation in membranes: theory, experiments and simulations. J Membr Biol 252:241–260. doi.org/10.1007/s00232-019-00083-4

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • de Meyer F, Smit B (2009) Effect of cholesterol on the structure of a phospholipid bilayer. Proc Natl Acad Sci USA 106:3654–3658. doi.org/10.1073/pnas.0809959106

    Article 
    PubMed 

    Google Scholar
     

  • Dev SB, Rabussay DP, Widera G, Hofmann GA (2000) Medical applications of electroporation. IEEE Trans Plasma Sci 28:206–223. doi.org/10.1109/27.842905

    CAS 
    Article 

    Google Scholar
     

  • Dimova R, Riske KA, Aranda S, Bezlyepkina N, Knorr RL, Lipowsky R (2007) Giant vesicles in electric fields. Soft Matter 3:817. doi.org/10.1039/b703580b

    CAS 
    Article 

    Google Scholar
     

  • Dimova R, Bezlyepkina N, Jordö MD, Knorr RL, Riske KA, Staykova M, Vlahovska PM, Yamamoto T, Yang P, Lipowsky R (2009) Vesicles in electric fields: some novel aspects of membrane behavior. Soft Matter 5:3201. doi.org/10.1039/b901963d

    CAS 
    Article 

    Google Scholar
     

  • Evans E, Rawicz W (1990) Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys Rev Lett 64:2094–2097. doi.org/10.1103/PhysRevLett.64.2094

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Evans E, Smith BA (2011) Kinetics of hole nucleation in biomembrane rupture. New J Phys 13:095010. doi.org/10.1088/1367-2630/13/9/095010

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans E, Heinrich V, Ludwig F, Rawicz W (2003) Dynamic tension spectroscopy and strength of biomembranes. Biophys J 85:2342–2350. doi.org/10.1016/S0006-3495(03)74658-X

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Falck E, Patra M, Karttunen M, Hyvönen MT, Vattulainen I (2004) Lessons of slicing membranes: interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers. Biophys J 87:1076–1091. doi.org/10.1529/biophysj.104.041368

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernández ML, Marshall G, Sagués F, Reigada R (2010) Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers. J Phys Chem B 114:6855–6865. doi.org/10.1021/jp911605b

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hasan M, Karal MAS, Levadnyy V, Yamazaki M (2018) Mechanism of initial stage of pore formation induced by antimicrobial peptide magainin 2. Langmuir 34:3349–3362. doi.org/10.1021/acs.langmuir.7b04219

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hinzpeter A, Fritsch J, Borot F, Trudel S, Vieu DL, Brouillard F, Baudouin-Legros M, Clain J, Edelman A, Ollero M (2007) Membrane cholesterol content modulates ClC-2 gating and sensitivity to oxidative stress. J Biol Chem 282:2423–2432. doi.org/10.1074/jbc.M608251200

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Holthuis JCM, van Meer G, Huitema K (2003) Lipid microdomains, lipid translocation and the organization of intracellular membrane transport (review). Mol Membr Biol 20:231–241

    CAS 
    Article 

    Google Scholar
     

  • Islam MZ, Alam JM, Tamba Y, Karal MAS, Yamazaki M (2014) The single GUV method for revealing the functions of antimicrobial, pore-forming toxin, and cell-penetrating peptides or proteins. Phys Chem Chem Phys 16:15752–15767. doi.org/10.1039/c4cp00717d

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Jurkiewicz P, Olżyńska A, Cwiklik L, Conte E, Jungwirth P, Megli FM, Hof M (2012) Biophysics of lipid bilayers containing oxidatively modified phospholipids: insights from fluorescence and EPR experiments and from MD simulations. Biochim Biophys Acta 1818:2388–2402. doi.org/10.1016/j.bbamem.2012.05.020

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Karal MAS, Yamazaki M (2015) Communication: activation energy of tension-induced pore formation in lipid membranes. J Chem Phys 143:081103. doi.org/10.1063/1.4930108

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Karal M, Levadnyy V, Tsuboi T-A, Belaya M, Yamazaki M (2015a) Electrostatic interaction effects on tension-induced pore formation in lipid membranes. Phys Rev E 92:012708. doi.org/10.1103/PhysRevE.92.012708

    CAS 
    Article 

    Google Scholar
     

  • Karal MAS, Alam JM, Takahashi T, Levadny V, Yamazaki M (2015b) Stretch-activated pore of the antimicrobial peptide, magainin 2. Langmuir 31:3391–3401. doi.org/10.1021/la503318z

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Karal MAS, Levadnyy V, Yamazaki M (2016) Analysis of constant tension-induced rupture of lipid membranes using activation energy. Phys Chem Chem Phys 18:13487–13495. doi.org/10.1039/C6CP01184E

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Karal MAS, Ahamed MK, Rahman M, Ahmed M, Shakil MM, Rabbani KS (2019a) Effects of electrically-induced constant tension on giant unilamellar vesicles using irreversible electroporation. Eur Biophys J 48:731–741. doi.org/10.1007/s00249-019-01398-9

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Karal MAS, Rahman M, Ahamed MK, Shibly SUA, Ahmed M, Shakil MM (2019b) Low cost non-electromechanical technique for the purification of giant unilamellar vesicles. Eur Biophys J 48:349–359. doi.org/10.1007/s00249-019-01363-6

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Karal MAS, Ahammed S, Levadny V, Levadny V, Belaya M, Ahamed MK, Ahmed M, Mahbub ZB, Ullah AKMA (2020a) Deformation and poration of giant unilamellar vesicles induced by anionic nanoparticles. Chem Phys Lipid 230:10491

    Article 

    Google Scholar
     

  • Karal MAS, Ahmed M, Levadny V, Belaya M, Ahamed MK, Rahman M, Shakil MM (2020b) Electrostatic interaction effects on the size distribution of self-assembled giant unilamellar vesicles. Phys Rev E 101:012404. doi.org/10.1103/PhysRevE.101.012404

    Article 
    PubMed 

    Google Scholar
     

  • Karal MAS, Islam MK, Mahbub ZB (2020c) Study of molecular transport through a single nanopore in the membrane of a giant unilamellar vesicle using COMSOL simulation. Eur Biophys J 49:59–69. doi.org/10.1007/s00249-019-01412-0

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Karal MAS, Ahamed MK, Ahmed M, Ahamed S, Mahbub ZB (2020d) Location of peptide-induced submicron discontinuities in the membranes of vesicles using ImageJ. J Fluoresc. doi.org/10.1007/s10895-020-02560-9

    Article 
    PubMed 

    Google Scholar
     

  • Karatekin E, Sandre O, Guitouni H, Borghi N, Puech P-H, Brochard-Wyart F (2003) Cascades of transient pores in giant vesicles: line tension and transport. Biophys J 84:1734–1749. doi.org/10.1016/S0006-3495(03)74981-9

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kheyfets B, Mukhin S (2015) Area per lipid in DPPC-cholesterol bilayers: analytical approach. arxiv.org/abs/1501.02727  

  • Koronkiewicz S, Kalinowski S (2004) Influence of cholesterol on electroporation of bilayer lipid membranes: chronopotentiometric studies. Biochim Biophys Acta (BBA) Biomembr 1661:196–203. doi.org/10.1016/j.bbamem.2004.01.005

    CAS 
    Article 

    Google Scholar
     

  • Levadny V, Tsuboi T, Belaya M, Yamazaki M (2013) Rate constant of tension-induced pore formation in lipid membranes. Langmuir 29:3848–3852. doi.org/10.1021/la304662p

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Levine ZA, Vernier PT (2010) Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation. J Membr Biol 236:27–36. doi.org/10.1007/s00232-010-9277-y

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lian T, Ho RJ (2001) Trends and developments in liposome drug delivery systems. J Pharm Sci 90:667–680

    CAS 
    Article 

    Google Scholar
     

  • Lisin R, Zion Ginzburg B, Schlesinger M, Feldman Y (1996) Time domain dielectric spectroscopy study of human cells. I. Erythrocytes and ghosts. Biochim Biophys Acta (BBA) Biomembr 1280:34–40. doi.org/10.1016/0005-2736(95)00266-9

    Article 

    Google Scholar
     

  • Litster JD (1975) Stability of lipid bilayers and red blood cell membranes. Phys Lett A 53:193–194. doi.org/10.1016/0375-9601(75)90402-8

    Article 

    Google Scholar
     

  • Magarkar A, Dhawan V, Kallinteri P, Viitala T, Elmowafy M, Rog T, Bunker A (2014) Cholesterol level affects surface charge of lipid membranes in saline solution. Sci Rep 4:1–5. doi.org/10.1038/srep05005

    CAS 
    Article 

    Google Scholar
     

  • Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30:592–599. doi.org/10.1016/j.tips.2009.08.004

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Miller L, Leor J, Rubinsky B (2005) Cancer cells ablation with irreversible electroporation. Technol Cancer Res Treat 4:699–705. doi.org/10.1177/153303460500400615

    Article 
    PubMed 

    Google Scholar
     

  • Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta (BBA) Rev Biomembr 1469:159–195. doi.org/10.1016/S0304-4157(00)00016-2

    CAS 
    Article 

    Google Scholar
     

  • Needham D, Hochmuth RM (1989) Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility. Biophys J 55:1001–1009. doi.org/10.1016/S0006-3495(89)82898-X

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Needham D, Nunn RS (1990) Elastic deformation and failure of lipid bilayer membranes containing cholesterol. Biophys J 58:997–1009

    CAS 
    Article 

    Google Scholar
     

  • Orlowski S, Mir LM (1993) Cell electropermeabilization: a new tool for biochemical and pharmacological studies. Biochim Biophys Acta (BBA) Rev Biomembr 1154:51–63. doi.org/10.1016/0304-4157(93)90016-H

    CAS 
    Article 

    Google Scholar
     

  • Portet T, Dimova R (2010) A new method for measuring edge tensions and stability of lipid bilayers: effect of membrane composition. Biophys J 99:3264–3273. doi.org/10.1016/j.bpj.2010.09.032

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pucadyil TJ, Chattopadhyay A (2006) Role of cholesterol in the function and organization of G-protein coupled receptors. Prog Lipid Res 45:295–333. doi.org/10.1016/j.plipres.2006.02.002

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79:328–339

    CAS 
    Article 

    Google Scholar
     

  • Riske KA, Dimova R (2005) Electro-deformation and poration of giant vesicles viewed with high temporal resolution. Biophys J 88:1143–1155. doi.org/10.1529/biophysj.104.050310

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Róg T, Pasenkiewicz-Gierula M, Vattulainen I, Karttunen M (2009) Ordering effects of cholesterol and its analogues. Biochim Biophys Acta 1788:97–121. doi.org/10.1016/j.bbamem.2008.08.022

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Roy SK, Karal MAS, Kadir MA, Rabbani KS (2019) A new six-electrode electrical impedance technique for probing deep organs in the human body. Eur Biophys J. doi.org/10.1007/s00249-019-01396-x

    Article 
    PubMed 

    Google Scholar
     

  • Semple SC, Chonn A, Cullis PR (1996) Influence of cholesterol on the association of plasma proteins with liposomes. Biochemistry 35:2521–2525. doi.org/10.1021/bi950414i

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sharmin S, Islam MZ, Karal MAS, Shibly SUA, Dohra H, Yamazaki M (2016) Effects of lipid composition on the entry of cell-penetrating peptide oligoarginine into single vesicles. Biochemistry 55:4154–4165. doi.org/10.1021/acs.biochem.6b00189

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Silvius JR (2003) Role of cholesterol in lipid raft formation: lessons from lipid model systems. Biochim Biophys Acta (BBA) Biomembr 1610:174–183. doi.org/10.1016/S0005-2736(03)00016-6

    CAS 
    Article 

    Google Scholar
     

  • Simon SA, McIntosh TJ (1986) Depth of water penetration into lipid bilayers. Method Enzymol 127:511–521. doi.org/10.1016/0076-6879(86)27041-X

    CAS 
    Article 

    Google Scholar
     

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572. doi.org/10.1038/42408

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sukharev SI, Klenchin VA, Serov SM, Chernomordik LV, Chizmadzhev YA (1992) Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores. Biophys J 63:1320–1327. doi.org/10.1016/S0006-3495(92)81709-5

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamba Y, Terashima H, Yamazaki M (2011) A membrane filtering method for the purification of giant unilamellar vesicles. Chem Phys Lipids 164:351–358. doi.org/10.1016/j.chemphyslip.2011.04.003

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tanizaki S, Feig M (2005) A generalized Born formalism for heterogeneous dielectric environments: application to the implicit modeling of biological membranes. J Chem Phys 122:124706. doi.org/10.1063/1.1865992

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4045–4053. doi.org/10.1529/biophysj.104.050617

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taupin C, Dvolaitzky M, Sauterey C (1975) Osmotic pressure-induced pores in phospholipid vesicles. Biochemistry 14:4771–4775. doi.org/10.1021/bi00692a032

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tieleman DP (2004) The molecular basis of electroporation. BMC Biochem 5:10. doi.org/10.1186/1471-2091-5-10

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tieleman DP, Leontiadou H, Mark AE, Marrink S-J (2003) Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J Am Chem Soc 125:6382–6383. doi.org/10.1021/ja029504i

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tsong TY (1989) Electroporation of cell membranes. In: Neumann E, Sowers AE, Jordan CA (eds) Electroporation and electrofusion in cell biology. Springer, Boston. doi.org/10.1007/978-1-4899-2528-2_9


    Google Scholar
     

  • Tsong TY (1991) Electroporation of cell membranes. Biophys J 60:297–306. doi.org/10.1016/S0006-3495(91)82054-9

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124. doi.org/10.1038/nrm2330

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vasir JK, Labhasetwar V (2007) Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv Drug Deliv Rev 59:718–728. doi.org/10.1016/j.addr.2007.06.003

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wohlert J, den Otter WK, Edholm O, Briels WJ (2006) Free energy of a trans-membrane pore calculated from atomistic molecular dynamics simulations. J Chem Phys 124:154905. doi.org/10.1063/1.2171965

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yeagle PL (1985) Cholesterol and the cell membrane. Biochim Biophys Acta 822:267–287. doi.org/10.1016/0304-4157(85)90011-5

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhelev DV, Needham D (1993) Tension-stabilized pores in giant vesicles: determination of pore size and pore line tension. Biochim Biophys Acta 1147:89–104

    CAS 
    Article 

    Google Scholar
     



  • Source link