Electroporation is a method for the introduction of molecules (usually nucleic acids) into a cell, consisting of submitting the cells to high-voltage and short electric pulses in the presence of the exogenous DNA/molecule. It is a versatile method, adaptable to different types of cells, from bacteria to cultured cells to higher eukaryotes, and thus has applications in many diverse fields, such as environmental biology, biotechnology, genetic engineering, and medicine. Electroporation has some advantages over other genetic transformation strategies, including the simplicity of the method, a wide range of adjustable parameters (possibility of optimization), high reproducibility and avoidance of the use of chemicals toxic to cells. Here we describe an optimized electroporation procedure for the industrially important fungus Acremonium chrysogenum, using germinated conidia and fragmented young mycelium. In both cases, the transformation efficiency was higher compared to the conventional polyethylene glycol (PEG)-mediated transformation of protoplasts.


Acremonium chrysogenum; Electroporation; Filamentous fungi; Genetic transformation.

Source link