• 1.

    Yarmush, M. L., Golberg, A., Serša, G., Kotnik, T., & Miklavčič, D. (2014). Electroporation-based technologies for medicine: principles, applications, and challenges. Annual Review of Biomedical Engineering, 16, 30295–30320.

  • 2.

    Spencer, S. C. (1993). Electroporation technique of DNA transfection. Applied Biochemistry and Biotechnology, 42(1), 75–82.

  • 3.

    Probst, U., Fuhrmann, I., Beyer, L., & Wiggermann, P. (2018). Electrochemotherapy as a new modality in interventional oncology: a review. Technology in Cancer Research & Treatment, 17, 1533033818785329.

  • 4.

    Yang, W., Wu, Y. H., Yin, D., Koeffler, H. P., Sawcer, D. E., Vernier, P. T., & Gundersen, M. A. (2011). Differential sensitivities of malignant and normal skin cells to nanosecond pulsed electric fields. Technology in Cancer Research & Treatment, 10(3), 281–286.

  • 5.

    Frandsen, S. K., Krüger, M. B., Mangalanathan, U. M., Tramm, T., Mahmood, F., Novak, I., & Gehl, J. (2017). Normal and malignant cells exhibit differential responses to calcium electroporation. Cancer Research, 77(16), 4389–4401.

  • 6.

    Frandsen, S. K., Gissel, H., Hojman, P., Eriksena, J., & Gehl, J. (2014). Calcium electroporation in three cell lines: a comparison of bleomycin and calcium, calcium compounds, and pulsing conditions. Biochimica et Biophysica Acta, 1840(3), 1204–1208.

  • 7.

    Potter, H. (2003). Transfection by electroporation. Current Protocols in Molecular Biology chapter 9, unit 93.

  • 8.

    Kim, H. B., Lee, S., Shen, Y., Ryu, P.-D., Lee, Y., Chung, J. H., Sung, C. K., & Baik, K. Y. (2019). Physicochemical factors that affect electroporation of lung cancer and normal cell lines. Biochemical and Biophysical Research Communications, 517, 703e708.

  • 9.

    Shagoshtasbi, H., Deng, P., & Lee, Y. K. (2015). A nonlinear size-dependent equivalent circuit model for single-cell electroporation on microfluidic chips. Journal of Laboratory Automation, 20(4), 481–490.

  • 10.

    Agarwal, A., Zudans, I., Weber, E. A., Olofsson, J., Orwar, O., & Weber, S. G. (2007). Effect of cell size and shape on single-cell electroporation. Analytical Chemistry, 79(10), 3589–3596.

  • 11.

    Aiken, E. J., Kilberg, B. G., Yu, S., Hagness, S. C., & Booske, J. H. (2018). Ionomycin-induced changes in membrane potential alter electroporation outcomes in HL-60 cells. Biophysical Journal, 114(12), 2875–2886.

  • 12.

    Kennedy, S. M., Aiken, E. J., Beres, K. A., Hahn, A. R., Kamin, S. J., Hagness, S. C., Booske, J. H., & Murphy, W. L. (2014). Cationic peptide exposure enhances pulsed-electric-field-mediated membrane disruption. PLoS One, 9(3), e92528.

  • 13.

    Mahmoud, A. A., Zeina, A. N., Farah, M., & Tahir, A. R. (2018). Electrical characterization of normal and cancer cells. IEEE access, 6, 25979–25986.

  • 14.

    Kanduser, M., Sentjurc, M., & Miklavcic, D. (2006). Cell membrane fluidity related to electroporation and resealing. European Biophysics Journal, 35(3), 196–204.

  • 15.

    van Uitert, I., Le Gac, S., & van den Berg, A. (2010). The influence of different membrane components on the electrical stability of bilayer lipid membranes. Biochimica et Biophysica Acta, 1798(1), 21–31.

  • 16.

    Cemazar, M., Jarm, T., Miklavcic, D., Lebar, A. M., Ihan, A., Kopitar, N. A., & Sersa, G. (1998). Effect of electric-field intensity on electropermeabilization and electrosensitivity of various tumor-cell lines in vitro. Electro- and Magnetobiology, 17(2), 263–272.

  • 17.

    Gianulis, E. C., Labib, C., Saulis, G., Novickij, V., Pakhomova, O. N., & Pakhomov, A. G. (2017). Selective susceptibility to nanosecond pulsed electric field (nsPEF) across different human cell types. Cellular and Molecular Life Sciences, 74(9), 1741–1754.

  • 18.

    Goldmann, W. H. (2008). Actin: a molecular wire, an electrical cable. Cell Biology International, 32(7), 869–870.

  • 19.

    Kanthou, C., Kranjc, S., Sersa, G., Tozer, G., Zupanic, A., & Cemazar, M. (2006). The endothelial cytoskeleton as a target of electroporation-based therapies. Molecular Cancer Therapeutics, 5(12), 3145–3152.

  • 20.

    Pakhomov, A. G., Xiao, S., Pakhomova, O. N., Semenov, I., Kuipers, M. A., & Ibey, B. L. (2014). Disassembly of actin structures by nanosecond pulsed electric field is a downstream effect of cell swelling. Bioelectrochemistry, 100, 88–95.

  • 21.

    Deyou, X., Tang, L., Zeng, C., Wang, J., Luo, X., Yao, C., & Sun, C. (2011). Effect of actin cytoskeleton disruption on electric pulse induced apoptosis and electroporation in tumour cells. Cell Biology International, 35(2), 99–104.

  • 22.

    Thompson, G. L., Roth, C. Tolstykh, G. Kuipers, M. Ibey, B. L. (2013). Role of cytoskeleton and elastic moduli in cellular response to nanosecond pulsed electric fields, Proc. SPIE 8585, Terahertz and Ultrashort Electromagnetic Pulses for Biomedical Applications, 85850.

  • 23.

    Stacey, M., Fox, P., Buescher, S., & Kolb, J. (2011). Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival. Bioelectrochemistry, 82(2), 131–134.

  • 24.

    Blangero, C., Rols, M. P., & Teissie, J. (1989). Cytoskeletal reorganization during electric-field-induced fusion of Chinese hamster ovary cells grown in monolayers. Biochimica et Biophysica Acta, 981(2), 295–302.

  • 25.

    Teissie, J., & Rols, M. P. (1994). Manipulation of cell cytoskeleton affects the lifetime of cell membrane electropermeabilization. Annals of the New York Academy of Sciences, 720, 98–110.

  • 26.

    Perrier, D. L., Vahid, A., Kathavi, V., Stam, L., Rems, L., Mulla, Y., Muralidharan, A., Koenderink, G. H., Kreutzer, M. T., & Boukany, P. E. (2019). Response of an actin network in vesicles under electric pulses. Scientific Reports, 9(1), 8151.

  • 27.

    Choi, Y. S., Kim, H. B., Chung, J., Kim, H. S., Yi, J. H., & Park, J. K. (2010). Preclinical analysis of irreversible electroporation on rat liver tissues using a microfabricated electroporator. Tissue Engineering Part C Methods, 16(6), 1245–1253.

  • 28.

    Domke, J., & Radmacher, M. (1989). Measuring the elastic properties of thin polymer films with the AFM. Langmuir, 14(12), 3320–3325.

  • 29.

    Hernández, J. A., & Chifflet, S. (2000). Electrogenic properties of the sodium pump in a dynamic model of membrane transport. The Journal of Membrane Biology, 176(1), 41–52.

  • 30.

    Strickholm, A. (1981). Ionic permeability of K, Na, and Cl in potassium-depolarized nerve. Biophys J., 35(3).

  • 31.

    Schoenbach, K. H., Stephen, J., Ravindra, P., Juergen, F., Richard, N., Christopher, O., Andrei, P., Miichael, S., James, S., Jody, A., Shu, X., Stephen, J., Peter, F., & Stehpen, B. (2007). Bioelectric effects of intense nanosecond pulses. IEEE Transactions on Dielectrics and Electrical Insulation, 14(5), 1088–1109.

  • 32.

    Xiao, D., Tang, L., Zeng, C., Wang, J., Luo, X., Yao, C., & Sun, C. (2011). Effect of actin cytoskeleton disruption on electric pulse-induced apoptosis and electroporation in tumour cells. Cell Biology International, 35(2), 99–104.

  • 33.

    Stevenson, B. R., & Begg, D. A. (1994). Concentration-dependent effects of cytochalasin d on tight junctions and actin filaments in MDCK epithelial cells. Journal of Cell Science, 107, 367–375.

  • 34.

    Kanzo, S. (2015). Improving physical methods of cell permeabilization by reducing plasma membrane stiffness in HeLa cells. Thesis, McGill University.

  • 35.

    Frey, W., White, J. A., Price, R. O., Blackmore, P. F., Joshi, R. P., Nuccitelli, R., Beebe, S. J., Schoenbach, K. H., & Kolb, J. F. (2006). Plasma membrane voltage changes during nanosecond pulsed electric field exposure. Biophysical Journal, 90(10), 3608–3615.

  • 36.

    Kanduser, M., & Miklavcic, D. (2009). Electroporation in biological cell and tissue: an overview. Food Engineering Series, 1–37.

  • 37.

    Marszalek, P., Liu, D., & Tsong, T. (1990). Schwan equation and transmembrane potential induced by altering electric field. Biophysical Journal, 58(4), 1053–1058.

  • 38.

    Grosse, C., & Schwan, H. (1992). Cellular membrane potentials induced by altering fields. Biophysical Journal, 63(6), 1632–1642.

  • 39.

    Teissié, J., & Rols, M. (1993). An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophysical Journal, 65(1), 409–413.

  • 40.

    Veech, R., Kashiwaya, Y., & King, M. (1995). The resting membrane potential of cells are measures of electrical work, not of ionic currents. Integrative Physiological and Behavioral Science, 30(4), 283–307.

  • 41.

    Barrau, C., Teissie, J., & Gabriel, B. (2004). Osmotically induced membrane fusion facilitates the triggering of living cell electroporation. Bioelectrochemistry, 63(1–2), 327–332.

  • 42.

    Djuzenova, C. S., Zimmermann, U., Frank, H., Sukhorukov, V. L., Richter, E., & Fuhr, G. (1996). Effect of medium conductivity and composition on the uptake of propidium iodide into electropermeabilized myeloma cells. Biochimica et Biophysica Acta, 1284(2), 143–152.

  • 43.

    Saunders, J. A., Smith, C. R., & Kaper, J. M. (1989). Effects of electroporation pulse wave on the incorporation of viral RNA into tobacco protoplasts. Biotechniques, 7(10), 1124–1131.

  • 44.

    Chiara, C., Fels, J., Liashkovich, I., Kliche, K., Jeggle, P., Kusche-Vihrog, K., & Oberleithner, H. (2011). Membrane potential depolarization decreases the stiffness of vascular endothelial cells. Journal of Cell Science, 124(Pt 11), 1936–1942.

  • 45.

    Oberleithner, H., Callies, C., Kusche-Vihrog, K., Schillers, H., Shahin, V., Riethmüller, C., Macgregor, G. A., & de Wardener, H. E. (2009). Potassium softens vascular endothelium and increases nitric oxide release. Proceedings of the National Academy of Sciences, 106(8), 2829–2834.

  • Source link