• Abidor IG, Arakelyan VB, Chernomordik LV, Chizmadzhev YA, Pastushenko VF, Tarasevich MR (1979) Electric breakdown of bilayer lipid membranes: I. The main experimental facts and their qualitative discussion. J Electroanal Chem Interfacial Electrochem 104:37–52. doi.org/10.1016/S0022-0728(79)81006-2

    Article 

    Google Scholar
     

  • Ahamed MK, Karal MAS, Ahmed M, Ahammed S (2020) Kinetics of irreversible pore formation under constant electrical tension in giant unilamellar vesicles. Eur Biophys 49:371–381. doi.org/10.1007/s00249-020-01440-1

    CAS 
    Article 

    Google Scholar
     

  • Akimov SA, Volynsky PE, Galimzyanov TR, Kuzmin PI, Pavlov KV, Batishchev OV (2017) Pore formation in lipid membrane II: Energy landscape under external stress. Sci Rep 7:12509. doi.org/10.1038/s41598-017-12749-x

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Sakere B, André F, Bernat C, Connault E, Opolon P, Davalos RV, Rubinsky B, Mir LM (2007) Tumor ablation with irreversible electroporation. PLoS ONE 2:e1135. doi.org/10.1371/journal.pone.0001135

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Betterton MD, Brenner MP (1999) Electrostatic edge instability of lipid membranes. Phys Rev Lett 82:1598–1601. doi.org/10.1103/PhysRevLett.82.1598

    CAS 
    Article 

    Google Scholar
     

  • Böckmann RA, de Groot BL, Kakorin S, Neumann E, Grubmuller H (2008) Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys J 95:1837–1850. doi.org/10.1529/biophysj.108.129437

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cevc G (1987) Phospholipid bilayers : Physical principles and models. Wiley, New York


    Google Scholar
     

  • Cevc G (1990) Membrane electrostatics. Biochim Biophys Acta (BBA) Rev Biomem 1031:311–382. doi.org/10.1016/0304-4157(90)90015-5

  • Dev SB, Rabussay DP, Widera G, Hofmann GA (2000) Medical applications of electroporation. IEEE Trans Plasma Sci 28:206–223. doi.org/10.1109/27.842905

    CAS 
    Article 

    Google Scholar
     

  • Diederich A, Bähr G, Winterhalter M (1998) Influence of surface charges on the rupture of black lipid membranes. Phys Rev E 58:4883–4889. doi.org/10.1103/PhysRevE.58.4883

    CAS 
    Article 

    Google Scholar
     

  • Dimova R, Riske KA, Aranda S, Bezlyepkina N, Knorr RL, Lipowsky R (2007) Giant vesicles in electric fields. Soft Matter 3:817. doi.org/10.1039/b703580b

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Dimova R, Bezlyepkina N, Jordö MD, Knorr RL, Riske KA, Staykova M, Vlahovska PM, Yamamoto T, Yang P, Lipowsky R (2009) Vesicles in electric fields: Some novel aspects of membrane behavior. Soft Matter 5:3201. doi.org/10.1039/b901963d

    CAS 
    Article 

    Google Scholar
     

  • Evans E, Smith BA (2011) Kinetics of hole nucleation in biomembrane rupture. New J Phys 13:095010. doi.org/10.1088/1367-2630/13/9/095010

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans E, Heinrich V, Ludwig F, Rawicz W (2003) Dynamic tension spectroscopy and strength of biomembranes. Biophys J 85:2342–2350. doi.org/10.1016/S0006-3495(03)74658-X

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. London, UK, Academic Press


    Google Scholar
     

  • Karal MAS, Levadnyy V, Tsuboi T-A, Belaya M, Yamazaki M (2015) Electrostatic interaction effects on tension-induced pore formation in lipid membranes. Phys Rev E 92:012708. doi.org/10.1103/PhysRevE.92.012708

    CAS 
    Article 

    Google Scholar
     

  • Karal MAS, Levadnyy V, Yamazaki M (2016) Analysis of constant tension-induced rupture of lipid membranes using activation energy. Phys Chem Chem Phys 18:13487–13495. doi.org/10.1039/C6CP01184E

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Karal MAS, Ahamed MK, Rahman M, Ahmed M, Shakil MM, Rabbani KS (2019) Effects of electrically-induced constant tension on giant unilamellar vesicles using irreversible electroporation. Eur Biophys J 48:731–741. doi.org/10.1007/s00249-019-01398-9

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Karal MAS, Rahman M, Ahamed MK, Shibly SUA, Ahmed M, Shakil MM (2019) Low cost non-electromechanical technique for the purification of giant unilamellar vesicles. Eur Biophys J 48:349–359. doi.org/10.1007/s00249-019-01363-6

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Karal MAS, Ahamed MK, Ahmed M, Ahamed S, Mahbub ZB (2020) Location of peptide-induced submicron discontinuities in the membranes of vesicles using ImageJ. J Fluoresc 30:735–740. doi.org/10.1007/s10895-020-02560-9

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Karal MAS, Ahamed MK, Mokta NA, Ahmed M, Ahammed S (2020) Influence of cholesterol on electroporation in lipid membranes of giant vesicles. Eur Biophys J 49:361–370. doi.org/10.1007/s00249-020-01443-y

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Karal MAS, Ahammed S, Levadny V, Levadny V, Belaya M, Ahamed MK, Ahmed M, Mahbub ZB, Ullah AKMA (2020) Deformation and poration of giant unilamellar vesicles induced by anionic nanoparticles. Chem Phys Lipids. doi.org/10.1016/j.chemphyslip.2020.104916

    Article 
    PubMed 

    Google Scholar
     

  • Karal MAS, Islam MK, Mahbub ZB (2020) Study of molecular transport through a single nanopore in the membrane of a giant unilamellar vesicle using COMSOL simulation. Eur Biophys J 49:59–69. doi.org/10.1007/s00249-019-01412-0

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Karal MAS, Orchi US, Towhiduzzaman M, Ahamed MK, Ahmed M, Ahammed S, Mokta NA, Sharmin S, Sarkar MK (2020) Electrostatic effects on the electrical tension-induced irreversible pore formation in giant unilamellar vesicles. Chem Phys Lipids 231:104935. doi.org/10.1016/j.chemphyslip.2020.104935

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Karatekin E, Sandre O, Guitouni H et al (2003) Cascades of transient pores in giant vesicles: line tension and transport. Biophys J 84:1734–1749. doi.org/10.1016/S0006-3495(03)74981-9

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kraayenhof R, Sterk GJ, Sang HWWF, Krab K, Epand RM (1996) Monovalent cations differentially affect membrane surface properties and membrane curvature, as revealed by fluorescent probes and dynamic light scattering. Biochim Biophys Acta (BBA) Biomem 1282:293–302. doi.org/10.1016/0005-2736(96)00069-7

  • Langner M, Kubica K (1999) The electrostatics of lipid surfaces. Chem Phys Lipids 101:3–35. doi.org/10.1016/S0009-3084(99)00052-3

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lekkerkerker HNW (1989) Contribution of the electric double layer to the curvature elasticity of charged amphiphilic monolayers. Physica A 159:319–328. doi.org/10.1016/0378-4371(89)90400-7

    Article 

    Google Scholar
     

  • Levadny V, Tsuboi T, Belaya M, Yamazaki M (2013) Rate constant of tension-induced pore formation in lipid membranes. Langmuir 29:3848–3852. doi.org/10.1021/la304662p

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Levine ZA, Vernier PT (2010) Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation. J Membrane Biol 236:27–36. doi.org/10.1007/s00232-010-9277-y

    CAS 
    Article 

    Google Scholar
     

  • Lisin R, Zion Ginzburg B, Schlesinger M, Feldman Y (1996) Time domain dielectric spectroscopy study of human cells. I. Erythrocytes and ghosts. Biochim Biophys Acta (BBA) Biomem 1280:34–40. doi.org/10.1016/0005-2736(95)00266-9

  • May S (1996) Curvature elasticity and thermodynamic stability of electrically charged membranes. J Chem Phys 105:8314–8323. doi.org/10.1063/1.472686

    CAS 
    Article 

    Google Scholar
     

  • Meier W, Graff A, Diederich A, Winterhalter M (2000) Stabilization of planar lipid membranes: A stratified layer approach. Phys Chem Chem Phys 2:4559–4562. doi.org/10.1039/b004073h

    CAS 
    Article 

    Google Scholar
     

  • Miklavcic D (2017) Handbook of Electroporation. Springer International Publishing, Switzerland. doi.org/10.1007/978-3-319-26779-1

    Article 

    Google Scholar
     

  • Miller L, Leor J, Rubinsky B (2005) Cancer cells ablation with irreversible electroporation. Technol Cancer Res Treat 4:699–705. doi.org/10.1177/153303460500400615

    Article 
    PubMed 

    Google Scholar
     

  • Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta (BBA) Rev Biomem 1469:159–195. doi.org/10.1016/S0304-4157(00)00016-2

  • Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79:328–339

    CAS 
    Article 

    Google Scholar
     

  • Reeves JP, Dowben RM (1969) Formation and properties of thin-walled phospholipid vesicles. J Cell Physiol 73:49–60. doi.org/10.1002/jcp.1040730108

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Riske KA, Dimova R (2005) Electro-deformation and poration of giant vesicles viewed with high temporal resolution. Biophys J 88:1143–1155. doi.org/10.1529/biophysj.104.050310

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rowan NJ, MacGregor SJ, Anderson JG, Fouracre RA, Farish O (2000) Pulsed electric field inactivation of diarrhoeagenic Bacillus cereus through irreversible electroporation. Lett Appl Microbiol 31:110–114. doi.org/10.1046/j.1365-2672.2000.00772.x

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sandre O, Moreaux L, Brochard-Wyart F (1999) Dynamics of transient pores in stretched vesicles. Proc Natl Acad Sci USA 96:10591–10596. doi.org/10.1073/pnas.96.19.10591

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Shoemaker SD, Vanderlick TK (2002) Intramembrane electrostatic interactions destabilize lipid vesicles. Biophys J 83:2007–2014. doi.org/10.1016/S0006-3495(02)73962-3

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simon SA, McIntosh TJ (1986) Depth of water penetration into lipid bilayers. I Method Enzymol 127:511–521. doi.org/10.1016/0076-6879(86)27041-X

  • Tamba Y, Terashima H, Yamazaki M (2011) A membrane filtering method for the purification of giant unilamellar vesicles. Chem Phys Lipids 164:351–358. doi.org/10.1016/j.chemphyslip.2011.04.003

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tanizaki S, Feig M (2005) A generalized Born formalism for heterogeneous dielectric environments: Application to the implicit modeling of biological membranes. J Chem Phys 122:124706. doi.org/10.1063/1.1865992

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Teissié J, Eynard N, Vernhes MC, Bénichoua A, Ganeva V, Galutzov B, Cabanes PA (2002) Recent biotechnological developments of electropulsation. A prospective review Bioelectrochemistry 55:107–112. doi.org/10.1016/s1567-5394(01)00138-4

    Article 
    PubMed 

    Google Scholar
     

  • Yeagle P (1992) The structure of biological membranes. CRC Press, BocaRaton, FL


    Google Scholar
     



  • Source link